Бифиляр тесла своими руками

Обновлено: 05.07.2024

Бифилярная катушка Тесла

Кроме того, в патенте была представлена бифилярная катушка Тесла плоской формы. Такие плоские катушки индуктивности по сравнению с «обычными» катушками, намотанными традиционным способом, сильно отличаются по своим свойствам.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Бифиляр

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Свойства бифилярной катушки Тесла

Бифилярная катушка Теслы была изобретена с целью увеличения собственной ёмкости, чтобы была возможно передавать большую мощность электрического тока. Целью изобретения Теслы было избавиться от применения дополнительных конденсаторов в приборах. Они применялись для нейтрализации самоиндукции, которая возникает в катушках и проводниках.

Изобретение бифилярной катушки Теслы позволило добиться нужного эффекта. Изготовленные по такой технологии катушки не обладают самоиндукцией. Кроме того, емкость такой катушки, полученная в результате такой конструкции, распределяется равномерно. И изменяя форму катушек и их размер, можно легко изменять полученную емкость.

Эти свойства бифиляра было впоследствии применены Александром Мишиным, который разработал свой прибор на основе этой технологии Теслы. Про катушку Мишина можно прочитать в этой статье.

Как сделать катушку Тесла своими руками. Бифилярная катушка Тесла

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.
  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Катушка Тесла своими руками

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифиляр тесла своими руками

Патент этот я выбрал по нескольким причинам. Очень многие, не понимая сути изобретения, часто бросают реплику "попробуй использовать бифилярки Теслы, - получишь хороший прирост КПД в своих устройствах". Причём, люди эти, даже отдалённо не предполагают, почему, собственно, такой способ намотки, вдруг, делает катушку более эффективной.

Ведь, если приглядеться, то становится понятно, что ток направлен всегда в одну сторону (например, по часовой стрелке) во всех витках, - и чётных, относящихся к одной намотке, и не чётных, относящихся ко второй. то есть, точно так же, как и в плоской катушке с намоткой в один провод. И магнитное поле, возникающее в любом произвольном витке, точно так же мешает движению зарядов (тока) в следующем витке, как это происходит и в простой катушке. Более того, индуктивные бифилярки Теслы часто путают с неиндуктивными бифилярками Купера, в которых ток в произвольно выбранных двух соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты). Тогда же рождается параллельный вопрос, - если намотка в два провода улучшает параметры катушки, то почему бы ни намотать в три, четыре. провода, т.е. сделать трифилярную, квадрофилярную и т.д. катушку, и не увеличить этот положительный эффект ?


Отгадка приходит, как ни странно, с русским переводом самого патента. Всё дело в разнице потенциалов в двух соседних витках. Тесла подробно исследовал процесс индукции и самоиндукции, а так же потери, возникающие в катушках. Он выяснил, что если очень сильно повысить ёмкость катушки, то для данной частоты тока, понижается сопротивление в витках и эффект самоиндукции стремительно падает. Подробнее об этих соотношениях читайте в патенте.

Здесь на рисунке : верхняя кривая, - это величина, запасаемой энергии в бифилярной катушке Теслы, а нижняя кривая, - величина энергии в обычной плоской катушке, намотанной в один провод (опыт проведён в условиях резонанса).

Также многие не догадываются, что катушка эта разрабатывалась Теслой исключительно для условий резонанса (последовательный LС-контур, резонанс напряжений), и в обычном виде он её не использовал (точнее - использовал, но об этом, как нибудь в другой раз). В резонансе на концах индуктивности (катушки) появляется потенциал гораздо более мощный, чем внешний управляющий сигнал контура (подаваемое напряжение). Но снять напрямую его от туда нельзя. При подключении нагрузки соотношение L и C резонансного контура нарушается (уменьшается индуктивность) и система выходит из резонанса. Сам Тесла (в свой ранний творческий период) и не ставил такой цели. Поэтому, название патента очень хорошо отражает суть изобретения.


В более поздний период Тесла, конечно же, возжелал отобрать эту колоссальную, появляющуюся в катушке мощность (энергию свободных вибраций). Здесь нам на руку играет тот факт, что катушка индуктивная. Т.е. её можно использовать в качестве одной из обмоток трансформатора. Если сделать трансформатор с асимметричной взаимоиндукцией первичной и вторичной обмотки, то можно на вторичную повесить нагрузку и наслаждаться халявой. Если нагрузка имеет статический характер (например, лампочка), то всё на порядок упрощается, - в этом случае, даже трансформатор не обязателен. Главное - всё точно рассчитать. А теперь, собственно, сам патент :

Тому, кого это может касаться.

Да будет известно, что я, Никола Тесла, гражданин США, проживающий в Нью-Йорке изобрёл полезное усовершенствование в катушках для электромагнитов и других аппаратов, которое ниже описано в сопровождении рисунков. В электромеханических аппаратах и системах переменного тока самоиндукционные катушки или проводники могут во многих случаях работать с потерями, что известно, как промышленная эффективность, и что приносит вред в различных аспектах. Эффект самоиндукции упомянутый выше, может быть нейтрализован ёмкостью тока определённой степени в соответствии с самоиндуктивностью и частотой тока. Это достигается использованием конденсаторов, собранных и применяемых как отдельный инструмент.

Моё это изобретение имеет целью изготовить катушки совершенными и избежать вовлечение конденсаторов, которые дорогие, громоздкие и труднорегулируемые. Я заявляю, что в термин "катушка" я включаю понятия соленоиды или любые проводники различные части которых находятся во взаимоотношениях друг с другом и фактически повышают самоиндукцию.

Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL : здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий.

В обычных катушках разность потенциалов между витками или спиралями очень маленькая, поэтому пока они во взаимодействии с конденсаторами, они несут очень небольшую ёмкость и взаимоотношения между самоиндукцией и ёмкостью не такие, как при обычном состоянии, удовлетворяющем рассмотренным требованиям где ёмкость очень мала относительно самоиндукции.

Для достижения цели увеличения ёмкости любой катушки, я наматываю её таким образом, чтобы обеспечить наибольшую разность потенциалов между соседними витками, а поскольку энергия хранящаяся в катушке (считаем, как в конденсаторе) пропорциональна квадрату разности потенциалов между витками, то становится понятно, что я могу таким образом, посредством определённого расположения витков, достичь увеличение ёмкости.

Я изобразил в приложении чертёж, в соответствии с которым осуществил это изобретение.

Рис.1 - схема катушки, намотанной обычным способом. Рис.2 - схема катушки намотанной согласно изобретения.

Пусть -А- на Рис.1 обозначает любую катушку спиралей или витков, из которых она намотана и которые изолированы друг от друга. Предположим, что концы этой катушки показывают разность потенциалов 100 В и что она содержит 1000 витков. Тогда очевидно, что существует разность потенциалов в одну десятую вольта между двумя любыми смежными точками на соседних витках.

Если теперь, как показано на Рис. 2, проводник -В- намотан параллельно проводнику -А- и изолирован от него, а конец -А- будет соединён с началом проводника -В-, тогда длина собранных вместе проводников будет такая же и число витков тоже самое (1000). И тогда разность потенциалов между любыми двумя точками проводников -А- и -В- будет 50 В, а т.к. ёмкостный эффект пропорционален квадрату этой разности, то энергия скопившаяся в катушке будет теперь в 250000 раз больше !

Следуя этому принципу теперь я могу намотать любое количество катушек, не только описанным выше путём, но любым другим известным способом но так, чтобы обеспечить такую разность потенциалов между соседними витками, которая обеспечит необходимую ёмкость чтобы нейтрализовать самоиндукцию для любого тока, который может иметь место. Емкость полученная таким образом имеет дополнительное преимущество в том, что распределяется равномерно, что является наиболее важным в большинстве случаев. И как результат, оба параметра, - эффективность и экономия, легче достигаются тогда, если размер катушек, разность потенциалов и частота тока увеличиваются.

Катушки, состоящие из проводников в изоляторе и намотанные виток к витку и соединённые последовательно не являются новыми, и я не уделяю особого внимания для их описания. Однако, на что я обращаю внимание это то, что намотки другими способами могут привести к другим результатам.

Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая.

Я заявляю в своём изобретении :

1. Катушка для электрического аппарата, состоит из витков, которые образуют часть цепи и между которыми существует разность потенциалов, достаточная для обеспечения ёмкости в катушке способной нейтрализовать самоиндукцию, как было описано.

2. Катушка, состоящая их изолированных проводников, соединённых последовательно имеет такую разность потенциалов, чтобы создать в целой катушке достаточную ёмкость для нейтрализации её самоиндукции.

Бифиляр тесла своими руками

  • Главная
  • Категории
  • Технологии
  • Бифилярная катушка и приспособление для ее намотки.

Бифилярная катушка и приспособление для ее намотки.

  • Печать
  • E-mail

Бифилярная катушка это электромагнитная катушка, которая содержит две близко расположенных, параллельных обмоток. Обычно, под словом бифиляр подразумевается провод, который состоит из двух изолированных жил. Если жил три, тогда это трифилярная намотка и т.д. Существует четыре типа бифилярных намоток:

  • параллельная намотка, последовательное соединение;
  • параллельная намотка, параллельное соединение;
  • встречно намотанная катушка, последовательное соединение;
  • встречно намотанная катушка, параллельное соединение.

В технике такого рода намотки применяются например для создания проволочных резисторов с незначительной паразитной индуктивностью, а так же в трансформаторах импульсных источников электропитания. Впервые катушка, намотанная бифилярным способом встречается в патенте Николы Теслы за номером 512 340 от 1894 года. Тесла объясняет, что при использовании катушки для электромагнитов её самоиндукция может быть нежелательна и может быть нейтрализована как с помощью подключения внешнего конденсатора, так и с помощью собственной ёмкости катушки специальной конструкции, которой и посвящён патент. Бифилярная катушка имеет большую собственную ёмкость, чем обычная, таким образом можно сэкономить на стоимости конденсаторов, — говорится в патенте. Следует отметить, что это применение бифилярной катушки отличается от современных. Текст патента приведен ниже:

Всем кого это может касаться:

Известно, что я, Никола Тесла, гражданин Соединенных Штатов, проживающий в Нью-Йорке в округе и Штате Нью-Йорк, изобрел определенные новые и полезные Улучшения в Катушках для Электро-Магнитов и других Аппаратов, для которых, последующее является описанием со ссылками на иллюстрации, являющиеся неотъемлемой частью сего.

В электрических аппаратах или системах, в которых используются переменные токи, самоиндукция катушек или проводников может, и фактически, во многих случаях, работает невыгодно, увеличивая паразитные токи, которые часто ведут к уменьшению того, что известно как коммерческая эффективность аппаратов, составляющих систему, или пагубно влияют на другие аспекты.

Известно, что эффекты самоиндукции, упомянутые выше, могут быть нейтрализованы путем пропорционального подбора емкости цепи с учетом самоиндукции и частоты токов. Это делалось до настоящего момента путем использования конденсаторов, применяемых как отдельные элементы.

Мое настоящее изобретение имеет целью избежать использование конденсаторов кои дорогостоящи, громоздки и сложны в обслуживании и сконструировать катушки сами-по-себе способные реализовать ту же конечную цель.

Здесь я бы хотел указать, что под термином «катушки» я прошу понимать спирали, соленоиды или, фактически, любой проводник различные части которого, исходя из требований применения или использования, были приведены в такие взаимоотношения друг-с-другом, которые ощутимо увеличивают самоиндукцию.

Я обнаружил, что в любой катушке существует определенная зависимость между ее самоиндукцией и емкостью, что позволяет току данной частоты и напряжения проходить через нее без сопротивления сверх оммического, или, другими словами, как будто она не обладает никакой самоиндукцией. Это происходит благодаря взаимной зависимости, существующей между особенным характером тока, самоиндукцией и емкостью катушки, последнее, количественно может нейтрализовать самоиндукцию на данной частоте. Хорошо известно, что чем выше частота или разница потенциалов тока, тем меньше емкость, необходимая для нейтрализации самоиндукции; следовательно, небольшая емкость, присутствующая в любой катушке, тем не менее может быть достаточной для достижения означенной цели если прочие условия выполнены. В обычных катушках разность потенциалов между соседними витками или частями спирали очень мала, таким образом, как конденсаторы, они обладают очень маленькой емкостью и отношение между значениями самоиндукции и емкости не достигает уровня, который удовлетворил бы рассматриваемые требования, так как емкость очень мала по сравнению с самоиндукцией.

Для того, чтобы достигнуть моей цели и существенно увеличить емкость любой данной катушки, я намотал ее таким образом, чтобы получить большую разность потенциалов между соседними витками или изгибами, и, так как энергия, запасенная в катушке, рассматривая ее как конденсатор, пропорциональна квадрату разности потениалов соседних витков, очевидно, что я могу таким образом получить значительно большее увеличение емкости при том же увеличении разности потенциалов между витками.

Я проиллюстрировал существо способа, который я применил для этого изобретения в предлагающихся схемах.

Фигура 1 является схемой катушки, намотанной обычном образом. Фиг. 2, является схемой способа намотки, который позволяет достигнуть целей моего изобретения.

Пусть А на Фиг.1, обозначает любую данную катушку состаящую из изолированных друг от друга витков. Пусть выводы этой катушки показывают разницу потенциалов в 100 волт, и что она имеет одну тысячу витков, далее, возьмем любые две соприкасающиеся точки на соседних витках и положим, что между ними будет присутствовать разность потенциалов в одну десятую вольта. Если теперь, как показано на Фиг. 2, проводник B будет намотан паралельно с проводником А и изолирован от него, а конец А будет соединен с начальной точкой B и общая длина двух проводников будет такой, что принятое количество витков в одну тысячу сохранится, то разница потенциалов между любыми двумя соприкасающимися точками на A и B будет пятьдесят вольт и, так как емкостной эффект пропорционален квадрату этой разности, энергия, запасенная во всей катушке теперь будет двести пятьдесят тысяч. Следуя этому принципу, я могу намотать любую данную катушку либо полностью, либо частично не только специфичным образом, здесь проиллюстрированным, но большим разнообразим способов, хорошо известных профессионалам, таким образом, что бы получить такую разность потенциалов между соседними витками, которая даст емкость, достаточную для нейтрализации самоиндукции при любом токе, который может быть задействован. Емкость, полученная таким своеобразным способом, обладает одним дополнительным достоинством: она распределена равномерно, что во многих случаях является важнейшим условием, а эффективность и экономичность достигается быстрее и легче с увеличением размера катушек, разности потенциалов или частоты токов.

Катушки, собранные из отдельных обмоток или проводников, навитых рядом друг с другом и соединенных последовательно, не являются чем-то новым сами по себе и я не буду описывать их более подробно чем здесь это необходимо. Однако, прежде, насколько я знаю, объектами внимания были вещи и результаты существенно отличные от моих, даже, свойства, присущие такой схеме намотки не были рассмотрены или поняты.

Рассматривая мое изобретение, важно понимать, что некоторые факты уже хорошо известны мастерам своего дела, а именно, отношения между емкостью, самоиндукцией, частотой и разницей потениалов тока. Поэтому, какую емкость необходимо получить в каждом конкретном случае и какая специальная схема намотки позволит достичь ее, может быть определено из других, уже хорошо известных соображений.

То, что я заявляю, как свое изобретение, это:

  1. Катушка для электрических машин, сопредельные витки которой формируют части цепи между которыми существует разность потениалов, достаточная для получения в катушке емкости, способной нейтрализовать самоиндукцию, как описано выше.
  2. Катушка, составленная из соприкасающихся изолированных проводников, электрически соединенных последовательно и имеющих такую разность потенциалов, которая достаточна для появления в катушке, как целом, емкости, достаточной для нейтрализации ее самоиндукции, как было изложено.

Роберт Ф. Гейлорд,

Такой способ намотки катушки создает суммарную емкость между витками намного выше, чем при обычной намотке. По идее электрическая емкость катушки остается той же самой, но ввиду того, что межвитковое напряжение получается выше, чем при обычной намотке – реактивного сопротивление на высокой частоте уменьшается, а емкость увеличивается. Никола Тесла использовал бифилярные катушки с целью придания цепям большей собственной емкости, и таким путем избегал применения дорогостоящих конденсаторов. В своих лекциях ученый упоминал бифилярные катушки именно как инструмент повышения собственной емкости зарядных и рабочих цепей различного высокочастотного оборудования высокого напряжения, которое он разрабатывал как для питания эффективных источников света, так и для передачи энергии на расстояние без проводов.

Для того, чтобы сделать самостоятельно плоскую бифилярную намотку – предлагаю воспользоваться простым приспособлением. Для изготовления приспособления потребуется лист фанеры толщиной 10мм или менее, с размерами не менее 200 х 100мм. Разрежем фанеру пополам и из одной половины выпилим круг, диаметром 70мм. У второй половины срежем по дуге одну из сторон с радиусом в 30мм. Нарисуем на круге центр и сделаем 8 отрезков от центра к периферии с шагом угла 45 градусов. На расстоянии 20 мм и 60 мм от центра круга разметим и высверлим отверстия 8мм диаметром и соединим их пропилами. На второй детали высверливаем отверстие под винт М5. Так же я использовал деревянный брусок в качестве основания для приспособления, а так же для крепления струбцинами к столу во время намотки. Круг следует закрепить в патроне дрели и тщательно отшлифовать его наждачной бумагой разной зернистости для предотвращения повреждения или спутывания провода. Так же следует подготовить несколько дисков из плотной бумаги или пластика для вставки между двумя половинами фанеры. Толщина этих дисков должна быть равна, либо чуть меньше чем диаметр используемого провода, а диаметр дисков должен составлять не менее 20 мм.

Чтобы намотать бифилярную катушку, следует соединить две половины приспособления винтом с гайкой, не забывая установить заранее прокладку. Далее, свернутый пополам провод следует пропустить в любую из прорезей круга и стянуть приспособление гайкой. Затем выполняем намотку в любую сторону двумя проводами. Следует отметить, что круг должен иметь фаску, чтобы провод было удобнее вкладывать между двумя половинами приспособления. После окончания намотки временно фиксируем провод на основании скотчем. Далее берем клей, либо полоски скотча шириной не более 8мм (чтобы он смог пройти через прорези) и фиксируем катушку скотчем через 8 прорезей круга. После этого разбираем приспособление и аккуратно извлекаем катушку. Далее ее следует наклеить используя двухсторонний скотч или клей на любую гладкую и диэлектрическую поверхность.

Катушка Тесла своими руками: схема и расчет. Как сделать катушку Тесла?

Никола Тесла – легендарная личность, причем о смысле некоторых его изобретений спорят и по сей день. В мистику мы вдаваться не будем, а поговорим лучше о том, как сделать кое-что эффектное по «рецептам» Теслы. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище!

катушка тесла

Общие сведения

Если говорить о простейшем таком трансформаторе (катушке), то он состоит из двух катушек, у которых нет общего сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже минимум 1000 витков. Учтите, что катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой.

На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров.

Когда возможности трансформатора были впервые продемонстрированы публике?

В городке Колорадо Спрингс однажды полностью сгорел генератор на местной электростанции. Причина была в том, что ток от него шел на питание первичной обмотки изобретения Николы Тесла. В ходе этого гениального эксперимента ученый впервые доказал сообществу, что существование стоячей электромагнитной волны - реальность. Если вашей мечтой является катушка Тесла, своими руками сложнее всего сделать именно первичную обмотку.

Вообще, смастерить ее самому не так уж и сложно, но куда труднее придать готовому изделию визуально привлекательный облик.

Простейший трансформатор

расчет катушки тесла

Сперва вам придется где-то отыскать источник высокого напряжения, причем минимум на 1,5 кВ. Впрочем, лучше всего сразу рассчитывать на 5 кВ. Затем крепим все это к подходящему конденсатору. Ежсли его емкость будет излишне велика, можно немного поэкспериментировать с диодными мостами. После этого делаете так называемый искровой промежуток, ради эффекта от которого и создается вся катушка Тесла.

Сделать его просто: берем пару проводов, а затем так скручиваем их изолентой, чтобы заголенные концы смотрели в одну сторону. Очень аккуратно регулируем зазор между ними, чтобы пробой был при напряжении чуть выше такового для источника питания. Не беспокойтесь: так как ток переменный, то на пике напряжение всегда будет немного выше заявленного. После этого всю конструкцию можно подключать к первичной обмотке.

В этом случае для изготовления вторичной можно намотать всего 150-200 витков на любую картонную втулку. Если все сделаете правильно, то получится неплохой разряд, а также заметная его ветвистость. Очень важно хорошо заземлить вывод со второй катушки.

Вот такая получилась простейшая катушка Тесла. Своими руками сделать ее сможет каждый, кто имеет хотя бы минимальные познания в электрике.

Конструируем более «серьезное» устройство

как собрать катушку тесла

Все это хорошо, но как устроен трансформатор, который не стыдно показать даже на какой-нибудь выставке? Сделать более мощное устройство вполне реально, но для этого нужно будет намного больше поработать. Сперва предупредим, что для проведения таких опытов у вас должна быть очень надежная проводка, иначе беды не избежать! Итак, что нужно брать в расчет? Катушки Тесла, как мы уже и говорили, нуждаются в действительно высоком напряжении.

Оно должно быть минимум 6 кВ, иначе красивых разрядов вам не видать, да и настройки будут постоянно сбиваться. Кроме того, искровик нужно делать только из цельнолитых кусков меди, причем ради вашей же собственной безопасности их следует максимально прочно зафиксировать в одном положении. Мощность всего «хозяйства» должна быть минимум 60 Вт, но лучше брать 100 и больше. Если это значение ниже, то у вас точно не получится действительно зрелищная катушка Тесла.

Очень важно! И конденсатор, и первичная обмотка обязательно должны в конечном счете образовать специфический колебательный контур, входящий в состояние резонанса со вторичной обмоткой.

Имейте в виду, что обмотка может резонировать сразу в нескольких различных диапазонах. Опыты показали, что имеет место частота 200, 400, 800 или 1200 кГц. Как правило, все это зависит от состояния и месторасположения первичной обмотки. Если у вас нет генератора частот, то придется экспериментировать с емкостью конденсатора, а также менять количество витков на обмотке.

Еще раз напоминаем, что нами обсуждается бифилярная катушка Тесла (с двумя катушками). Так что к вопросу намотки следует подходить серьезно, ведь иначе ничего толкового из затеи не выйдет.

Некоторые сведения о конденсаторах

катушка тесла на транзисторе

Заметим, что катушка Тесла на транзисторе нами не рассматривается. Ведь вы попросту не найдете транзисторов с нужными характеристиками.

Важно!

Вообще, еще раз напоминаем: перед тем как собрать катушку Тесла, проверьте состояние всей проводки в доме или квартире, позаботьтесь о наличии качественного заземления! Это может показаться занудным увещеванием, но с таким напряжением не шутят!

Обязательно нужно очень надежно изолировать обмотки друг от друга, так как в противном случае пробитие вам будет гарантировано. На вторичной обмотке желательно делать изоляцию между слоями витков, так как любая более-менее глубокая царапина на проволоке будет украшена небольшой, но чрезвычайно опасной короной разряда. А сейчас – за дело!

Приступаем к работе

Как можно заметить, элементов для сборки вам потребуется не так уж и много. Вот только нужно помнить, что для правильной работы устройства нужно не только правильно собрать, но и правильно настроить! Однако обо всем по порядку.

Трансформаторы (МОТы) можно демонтировать из любой старой микроволновки. Это практически стандартный силовой трансформатор, но у него есть одно важное отличие: его сердечник практически всегда работает в режиме насыщения. Таким образом, весьма компактное и простое устройство вполне может выдавать вплоть до 1,5 кВ. К сожалению, есть у них и специфические недостатки.

Так, величина тока холостого хода равна приблизительно трем-четырем амперам, да и нагрев даже в простое очень велик. У среднестатистической микроволновки МОТ выдает порядка 2-2,3 кВ, а сила тока равна приблизительно 500-850 мА.

Характеристики МОТов

бифилярная катушка тесла

Внимание! У этих трансформаторов первичная обмотка начинается снизу, тогда как вторичная расположена наверху. Такая конструкция обеспечивает лучшую изоляцию всех обмоток. Как правило, на «вторичке» находится накальная обмотка от магнетрона (приблизительно 3,6 Вольт). Между двумя слоями металла внимательный мастер может заметить пару каких-то металлических перемычек. Это магнитные шунты. Для чего они нужны?

Дело в том, что они замыкают на себе некоторую часть того магнитного поля, которое создает первичная обмотка. Это сделано для стабилизации поля и самого тока на второй обмотке. Если их нет, то при малейшем замыкании вся нагрузка идет на «первичку», а ее сопротивление совсем невелико. Таким образом, эти небольшие детали защищают трансформатор и вас, так как предотвращают многие неприятные последствия. Как ни странно, их все же лучше удалить? Почему?

Помните, что в микроволновой печи проблема с перегревом сего важного устройства решается путем установки мощных вентиляторов. Если же у вас трансформатор, в котором нет шунтов, то его мощность и тепловыделение значительно выше. У всех импортных микроволновых печей они чаще всего обстоятельно залиты эпоксидной смолой. Так почему же их нужно удалить? Дело в том, что в этом случае значительно снижается «просадка» тока под нагрузкой, что для наших целей очень важно. Как же быть с перегревом? Рекомендуем поместить МОТ в трансформаторное масло.

Кстати, плоская катушка Тесла вообще обходится без ферромагнитного сердечника и трансформатора, но нуждается в подаче тока еще большего напряжения. Из-за этого испытывать что-то подобное в домашних условиях настоятельно не рекомендуется.

Еще раз о технике безопасности

Маленькое дополнение: на вторичной обмотке напряжение такое, что поражение током при ее пробое приведет к гарантированной смерти. Помните, что схема катушки Тесла предполагает силу тока 500-850 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно… 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности!

Где и за сколько купить комплектующие?

катушка тесла своими руками

Если есть возможность, обязательно используйте МОТ от старой советской микроволновой печи «Электроника». Он не так компактен, как импортные аналоги, но зато и работает в режиме обычного трансформатора. Его промышленное обозначение - ТВ-11-3-220-50. Мощность он имеет приблизительно 1,5 кВт, на выходе выдает около 2200 Вольт, сила же тока равна 800 мА. Короче говоря, параметры весьма приличные даже для нашего времени. Кроме того, у него есть дополнительная обмотка на 12 В, идеальная в качестве источника питания для вентилятора, который будет охлаждать искровик Теслы.

Что еще нужно использовать?

Качественные высоковольтные конденсаторы из керамики серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14. Отыскать их сложно, так что лучше иметь в хороших друзьях профессиональных электриков. Как же быть с фильтром ВЧ? Понадобятся две катушки, которые могут надежно отфильтровать высокие частоты. В каждой из них должно быть не менее 140 витков качественного медного провода (в лаке).

Некоторые сведения об искровике

Искровик предназначен для возбуждения колебаний в контуре. Если его в схеме не будет, то питание пойдет, а вот резонанс - нет. Кроме того, блок питания начинает «пробивать» через первичную обмотку, что практически гарантированно приводит к короткому замыканию! Если искровик не замкнут, высоковольтные конденсаторы не могут заряжаться. Как только происходит его замыкание, в контуре начинаются колебания. Именно для предотвращения некоторых проблем используют дросселя. Когда искровик замыкается, дроссель предотвращает утечку тока от блока питания, а уж потом, когда контур будет разомкнут, начинается ускоренная зарядка конденсаторов.

схема катушки тесла

Характеристика устройства

Напоследок мы скажем еще несколько слов о самом трансформаторе Теслы: для первичной обмотки вы вряд ли сможете отыскать медный провод нужного диаметра, так что проще использовать медные трубки от холодильного оборудования. Число витков – от семи до девяти. На «вторичку» нужно намотать не менее 400 (до 800) витков. Точное количество определить невозможно, так что придется ставить опыты. Один выход подключается к ТОРу (излучателю молний), а второй очень (!) надежно заземляется.

Из чего сделать излучатель? Используйте для этого обыкновенную вентиляционную гофру. Перед тем как сделать катушку Тесла, фото которой есть здесь же, обязательно подумайте, как сконструировать ее более оригинальной. Ниже есть несколько советов.

В завершение…

Увы, но никакого практического применения у этого эффектного устройства нет и по сию пору. Кто-то показывает опыты в институтах, кто-то зарабатывает на этом, устраивая парки «чудес электричества». В Америке один весьма чудной товарищ пару лет назад так и вовсе соорудил из катушки Тесла… рождественскую елку!

Чтобы сделать ее красивее, он наносил различные вещества на излучатель молний. Имейте в виду: борная кислота дает зеленый цвет, марганец делает «елку» синей, а литий придает ей малиновый окрас. До сих пор идут споры об истинном назначении изобретения гениального ученого, но сегодня это – обычный аттракцион.

Как мотается бифилярная катушка и принцип её работы

Принцип работы
Я думаю, бифилярная катушка работает так. Встречная намотка её уменьшает индуктивность L. Каждый виток даёт поле, витков много и плотность магнитного поля получается большая при маленькой индуктивности. Так, что бифиляр можно поставить там, где большая частота. Имея большую индуктивность при большом количестве витков обычная катушка будет составлять большое сопротивление на большой частоте (снижение КПД силы поля). Бифиляр имеет маленькую индуктивность и при этом большую плотность магнитного поля, которая достигается большим количеством витков. Например, её можно поставить там, где надо сильней ударить по эфиру плотностью магнитного потока (кол. витков) и большее количество раз вытрясти из него энергию (частота), а так же больше количество раз принять из него .
Примечание: Несколько витков толстого провода это другой случай. Здесь прикладывается большой ток, и магнитный поток получается большой.
Как мотается
В инете про это нашёл мелкую фотографию, разобрал вроде так?
Провод мотается до конца катушки, потом сворачивается в петлю и мотается встречно обратно и т. д. Выглядит так: если взять два слоя, то они лежат друг на друге и направлены встречно. Так можно мотать ещё и ещё слой за слоем?
Вот мой рисунок правильно ли я понял фото?
Как мотается бифилярная катушка и принцип её работы 70f3e51c6914

sergdo новый перец

автор sergdo Вт 04 Окт 2011, 03:01

desel пишет: Принцип работы
Провод мотается до конца катушки, потом сворачивается в петлю и мотается встречно обратно и т. д. Выглядит так: если взять два слоя, то они лежат друг на друге и направлены встречно. Так можно мотать ещё и ещё слой за слоем?
Вот мой рисунок правильно ли я понял фото?
Как мотается бифилярная катушка и принцип её работы 70f3e51c6914

Admin Admin

автор Admin Вт 04 Окт 2011, 14:05

Атеперь поразмылите, что будет если такой встречный бифиляр поместить так как указано на рисунке. Тут самоиндукция съемной обмотки не будет влиять на первичную обмотку. И все из за этого всречного бифиляра. Как мотается бифилярная катушка и принцип её работы Deldmo11

автор desel Вт 04 Окт 2011, 16:34

Admin пишет: Атеперь поразмылите, что будет если такой встречный бифиляр поместить так как указано на рисунке. Тут самоиндукция съемной обмотки не будет влиять на первичную обмотку. И все из за этого всречного бифиляра. Как мотается бифилярная катушка и принцип её работы Deldmo11

Admin Admin

автор Admin Чт 06 Окт 2011, 14:53

автор desel Пт 07 Окт 2011, 16:35

автор filja Чт 24 Май 2012, 23:00

Admin Admin

автор Admin Пт 25 Май 2012, 12:16

автор filja Пт 25 Май 2012, 18:17

автор filja Сб 26 Май 2012, 19:24

Всем, Здравствуйте.
100000 страниц форумов - доказательство очевидного тупика, а тут ещё и порнуха. Это плохая тенденция. Так буксовать можно бесконечно, до тех пор, пока не изменим отношение к выявлению тенденций.

Все дело в том, что тем, кто пытается обосновать безтопливный двигатель это не удаётся в силу ложного их представления о пластичности Вселенной. Они доверчиво верят теориям и формулам, которые в отрыве от практики, следовательно, никогда не могут быть КРИТЕРИЕМ от ИСТИНЫ! Истина за образами от многомерности пространства, в параллельности миров. Образность мышления всегда ведёт как Иван Сусанин, в другую сторону, от той, где в силу Системного Мышления, - не Иван Сусанин, а ЛИДЕР – ФАВОРИТ от идей – сам путеводитель. Он на АВТОПИЛОТЕ каждого выводит там, где и понимать то – ничего не надо, кроме как только следовать за АВТОПИЛОТОМ.

Мне говорят, не понимаем тенденций. Я тогда отвечаю: ТЕНДЕНЦИИ НЕ ПОНИМАЮТ, ЗА НИМИ и с НИМИ СЛЕДУЮТ. Там где решают задачи безтопливного двигателя, СЕ, Само-питание Сверхединичных генераторов. И во всех других обстоятельствах.

Важен творческий процесс. И он позволяет: Вышедшему на СТАРТЕ последним, к ФИНИШУ придти – ПЕРВЫМ. Для этого важно использовать – системное мышление, такое которое, само, без нагрузки на мозг, или мышцы, позволит следовать за ЛИДЕРОМ от идей. За фаворитом идей, так, как это делают за 1минуту - ЗНАТОКИ = из (Что, Где, Когда),- для этого не надо иметь и высокий IQ, ибо автопилот за вас сделает всё самое важное и самое трудное. Т.Е. СМ может освоить даже школьник, - но, этого нет на 1000 страниц форумов.

Хронология трансформации ПЛОСКИХ пространств в энергию – это – революционные ШАГИ-СТУПЕНИ! Но, такие тенденции трансформации – на заре применения катушек – точно не планировались. Однако теперь более чем очевидна СУТЬ ТЕНДЕНЦИЙ В трансформации не самих катушек, а плоскостей, что вокруг них есть. ПЛОСКОСТЕЙ ПРОСТРАНСТВА! - с увеличением значимости порядка в продолжающейся тенденции развиваемой индуктивности, в том числе и безиндуктивных. Хронология как приём, путеводитель, всего, что противостоит затуханию импульса и гармоникам:
1. ступень = намотка – в навал - минус добротность, эффект слабый, знать тенденцию не возможно.
2. ступень = намотка уже не в навал, витки упорядочили, очевиден рост добротности. Но ещё не поняли того, что работают с плоскостями пространства. И тут трудно заметить тенденции в трансформации пространства в энергию.
3. ступень = бифиляр, = Из-за того, что Порядочность намотки росла, применение сплавов, = тенденция уже очевидна. Идёт преобразование плоскостей пространства в энергию. 4. ступень = намотка цилиндрическая = ещё очевиднее тенденция преобразования плоскостей пространства.
5. ступень = намотка цилиндрическая и бифиляр = добротности, тенденции = суммируется.
6. ступень = намотка плоской КАТУШКИ ТЕСЛА - тут Тесла патентом, провозгласил о противостоянии затуханию, в 250000 раз. Отвлекаясь на патент, Тесла, уже не мог дальше следить за ТЕНДЕНЦИЕЙ по, трансформации плоскостей пространства – в энергию. Принципы Вселенной, и в тенденции продолжаются. – ИГНОРИРУЯ это, патентом – Тесла СКАЗАЛ: - Всё, тенденции более быть не может. ОДНАКО- ЭТО НЕ ТАК. ТЕНДЕНЦИЯ НЕ ПРЕКРАЩЕНА.

7. ступень =АКСИОМА.= Трансформация плоскостей пространства - гравитации, полей, продолжает тенденцию. Поля продолжают звон, и эхо ни кто не отменил. Затухание колебаниям и их гармоникам, от импульса тока в проводе, ещё имеются. Конечно мы не получим - сверх проводимость меди. ОДНАКО - малая длина, и большое сечение, и столь уже сильное противостояние затуханию колебаний. Способствует увеличению энергии, и не только ПЛОСКОЙ КАТУШКИ ПАТЕНТА от Н.ТЕСЛА, применяемой в первичке и вторичке трансформатора. Тенденция плоской катушки, = концентрация энергии, - в 250000раз больше . Иначе говоря - этот его патент - является ДОКАЗАТЕЛЬСТВОМ того, что он пренебрегал самой существенной тенденцией, = которая на каждой ступени роста = прибавляла ЭНЕРГИИ в системы, за счёт преобразования плоскостей, .
ТЕПЕРЬ уже, РАЗВИВАЯ тенденцию плоского бифиляра, должно произойти не прибавление, а перемножение ЭНЕРГИЙ, которые прежде вносили затухание импульса и его гармоник. Или, Пусть и далее ПРЕПЯТСТВУЕТ затухание развитию системы. Это получится АБСУРД! Т.Е. - если бы Тесла следовал за ШЕСТЬЮ ТЕНДЕНЦИЯМИ, то, он бы тоже пришел к 7. СТУПЕНИ. Спираль то, его плоской катушки, пересекают огромное количество плоскостей, которые так же несут ЭДС самоиндукции, и этим создают ЗАТУХАНИЯ, которые так же ждут – когда их приведут в порядок, (синхронизируют). В этом Чаша Грааль!

Вот и надо оставшиеся плоскости между собой, синхронизировать. Так, что бы в пространстве была концентрация энергии против энергий, вносящих затухание гармоникам импульса от тока в проводе. - Т.Е. пусть провода первичек и вторичек находятся ТОЛЬКО в одной плоскости - И этим дарят нам ещё множество таких пространств, суть которых и станет ПЕРЕМНОЖЕНИЕМ ЭНЕРГИЙ. Направленных против затухания. Это я и предлагаю. И эта тенденция – ПОДСКАЗЫВАЕТ то, что надо тенденцию ПРОДОЛЖИТЬ.

Читайте также: