Рлр тесла схема монтажа

Добавил пользователь Евгений Кузнецов
Обновлено: 05.10.2024

Катушка Тесла своими руками: простая инструкция по изготовлению от специалиста!

Нельзя сказать, что изготовление катушки Тесла своими руками – простая задача. Необходимо знать ее устройство, принцип действия. Подбор материалов также важен, как и правильность расчетов. Однако, даже не имея образования инженера-электротехника, собрать прибор можно, если действовать согласно инструкции, приведенной ниже. Перед началом работ ознакомьтесь с теоретической частью, чтобы понимать, что и зачем вы делаете. В остальном процедура не составит труда.

Описание прибора

Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.

Принцип работы

Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.

Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.

Устройство катушки

Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:

  • Первичная обмотка крепится внизу. Заземление обязательно. Также нужно предусмотреть разъемы для крепления проводов от источника питания.
  • Вторичная обмотка. Изготавливают из медной проволоки, покрытой эмалью. Примерное количество витков – 800. Важно, чтобы обмотка не расплеталась.
  • Тороид. Задача данного элемента – снизить рабочие показатели резонансной частоты. Цель – увеличить характеристики рабочего поля.
  • Изолятор. Его еще называют защитным кольцом. Это разомкнутый медный контур, устанавливаемый для случаев, когда длина вторичной обмотки меньше чем у стримера.
  • Заземление. Здесь дело не только в безопасности. Отсутствие «земли» приводит к тому, что заряды уходят в воздух, а не образуют замкнутые кольца.

Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.

Расчет катушки

Тем, кто собирает трансформатор Тесла своими руками в домашних условиях, рассчитывать ничего не придется. Ниже в описании будут приведены все рекомендации с учетом параметров каждого из элементов. Но если работы ведутся в промышленных условиях, инженеры тщательно просчитывать множество параметров. Главное, что нужно знать – главное правильно рассчитать число витков обмоток. Есть взаимосвязь между количеством оборотов первичное и вторичной катушки.

Невозможно создать рабочее устройство, не зная индуктивности каждой из них и емкости контуров. Также просчитывается рабочая частота трансформатора и емкость конденсатора. Для любознательных читателей есть возможность сделать это своим умом. Формула и схема есть на сайте. А ниже приведена пошаговая инструкция с указанием конкретных параметров, и достаточно просто следовать алгоритму действий. Но перед этим подготовьте все необходимое с теми же характеристиками, которые указаны в описании процесса сборки.

Самостоятельное изготовление катушки Тесла по схеме

При монтаже трансформатора Тесла схема реализуется следующим образом:

  • Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
  • Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
  • Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
  • Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
  • Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
  • Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.

На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.

Подбор материалов и деталей

Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.

Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:

  • Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
  • Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
  • Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.

Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.

Сборка катушки Николя Тесла по инструкции

Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.

КАТУШКА ТЕСЛА SSTC

Представляем очередную мощную полупроводниковую катушку Тесла, которая как и предыдущий вариант была подсмотрена в буржунете. Катушки Тесла, как мы знаем, являются устройствами, используемыми для генерации высокого напряжения. В случае SSTC это напряжение около 80 - 100 кВ.

Структура SSTC (электронная катушка Тесла) отличается от классических катушек (SGTC) использованием электронного инвертора вместо генератора на основе искрового промежутка. Это обеспечивает гораздо более компактную конструкцию и устраняет необходимость в высоком напряжении на первичной стороне (схема питается от прямого и отфильтрованного сетевого напряжения). В результате нет необходимости использовать дорогие и труднодоступные высоковольтные трансформаторы и конденсаторы.

Работа катушки основана на использовании явления электрического резонанса. Резонансный контур расположен на вторичной стороне, созданной индуктивностью многослойной однослойной воздушной катушки, и рассеянной емкостью, создаваемой как обмотками, так и емкостью тора, верхней клеммы катушки и даже самого коронного разряда. Чтобы катушка работала, вторичный резонансный контур должен быть «накачан» сильным сигналом с частотой, идеально синхронизированной с возникающим в нем резонансом. Здесь источником этого сигнала является электронный инвертор.

Схема высоковольтного генератора SSTC




Что касается данной конструкции, это типичная схема, использующая мост с транзистором. Ниже приведены принципиальные схемы мощной Теслы SSTC (блок питания, контроллер и мост). Функции напряжений БП:

  • 15 В используется для питания драйверов.
  • 5 В для 74HC14 - эта микросхема имеет ограниченное рабочее напряжение.
  • 12 В предназначено для питания вентиляторов охлаждения и NE555.

Принцип работы довольно прост. Антенна принимает электрическое поле резонатора, получая сигнал с формой волны, всегда соответствующей резонансу на вторичной стороне. Этот сигнал сначала «обрезается» до соответствующего уровня с помощью диодного ограничителя, а затем формируется цепью 74HC14 в прямоугольную волну. Используя эту обратную связь, катушка невосприимчива к отстройке - обычно емкость во вторичной цепи зависит от окружающей среды, и даже приближение руки к резонатору может вызвать значительное изменение резонансной частоты. Если сигнал управления поступает на контур от генератора постоянной частоты, это приведет к потере разряда, а часто даже к сгоранию транзисторов в мосту. Данное схемное решение полностью устраняет такие проблемы.


Сформированный сигнал управляет парой драйверов MOSFET, которые в свою очередь управляют мостовыми транзисторами через трансформатор.

Участок схемы, использующий м/с NE555, является так называемым прерывателем. Он нужен для включения / выключения работы катушки регулируемыми интервалами. Это позволяет изменять поведение разрядов и разгружает электронику, давая ей время остыть, а в случае более продвинутого прерывателя даже модулировать разряды так, чтобы они воспроизводили звук. Другая функция прерывателя - генерировать импульс, который вызывает одиночное переключение моста при включении катушки. Этот импульс вызывает колебания в резонаторе, позволяя катушке начать работать.


Сам мост является типичным H-мостом на МОП-транзисторах. Он питается от сетевого напряжения, которое фильтруется одним твердотельным конденсатором 2200 мкФ 400 В. В качестве устройства плавного пуска использован сильноточный термистор NTC.


Транзисторы в мосту защищены набором диодов. Стабилитроны на затворе также должны защищать полевые ключи. Диоды MBR2545 и 15ETX06 используются для блокировки и замены встроенных транзисторных диодов внешними сверхбыстрыми диодами. Поскольку внешние диоды работают в десятки раз быстрее, это уменьшает явление перекрестных замыканий и потерь на переключение. Наличие этих диодов имеет важное значение, так как они отвечают за защиту от скачков напряжения, возникающих при переключении. Эти импульсы замыкаются на шину питания, где поглощаются конденсаторами С1 и С2, затем накопленная в них энергия берется мостом и, таким образом, восстанавливается.

Антипараллельный дискретный диод во много раз быстрее, чем ключевой диод, поэтому с ним таких проблем не возникает, диод Шоттки на стоке и блокирует протекание тока через диод MOSFET, предотвращая его включение. Это является необходимым дополнением, поскольку несмотря на то, что более быстрые и более медленные диоды различаются по времени отключения, они закрываются почти так же быстро - во время, ограниченное главным образом паразитными факторами, такими как индуктивность соединений.

В общем SSTC - это особый случай высоковольтного генератора, который не следует рассматривать как обычный инвертор, работающий на ферритовом стержне. Здесь у нас есть резонансная вторичная система, на которую динамически настраиваем часть мощности.

Вторичная цепь LC активно налагает синусоидальную форму волны тока на первичной обмотке, которую пытаемся синхронизировать, чтобы минимизировать потери на переключение. Если ключи переключаются не синхронно с ходом резонатора, это заставляет ток течь через него, вызывая перенапряжения и повышенные потери. Поэтому крайне важно минимизировать время простоя - ключи должны переключаться как можно ближе к нулевому току, в то время как большое простойное время переключает их «жестко» и увеличивает время, в течение которого диоды должны проводить ток, индуцированный вторичной цепью.

К сожалению, на практике (по крайней мере, на таком простом контроллере) всегда будут небольшие перенапряжения, приводящие к переключению диодов с антипараллельными ключами. Проблема в том, что диоды, встроенные в МОП-транзисторы, очень медленные, их отключение занимает много времени. Это приводит к перекрестным замыканиям, потому что диоды не могут выйти из проводимости, а тут уже включится противоположный ключ, что очевидно, очень вредное явление. В обычном инверторе это просто увеличивает время простоя - при блокировке ключа генерируется только короткое замыкание, после которого достаточно дождаться выключения диодов. Здесь же этого сделать нельзя, поскольку после закрытия ключей резонатор все же заставляет ток течь.

Установлены ключи попарно на старые процессорные кулеры, чтобы обеспечить надежное охлаждение. Когда вентиляторы включены, заметного увеличения температуры радиаторов не происходит.

Конденсаторы, соединенные последовательно с первичной обмоткой, предотвращают прохождение постоянного тока, которое может повредить ключи.

  1. Затворные резисторы R1..R4 вместе с параллельными диодами выполняют две важные функции. Первое - это предотвращение перекрестных коротких замыканий - резистор замедляет зарядку затвора, задерживая активность транзистора, а диод обеспечивает быструю разрядку затвора и закрытие ключа. Это исключает риск возникновения ситуации, когда верхнее и нижнее плечо одновременно открыты.
  2. Вторая функция - подавление паразитных колебаний - индуктивность обмотки GDT и емкость затвора создают систему LC, которая может возбуждаться во время переключения. Такие колебания могут выводить транзистор из состояния насыщения, что приводит к большим потерям и создает риск его повреждения.

Здесь следует упомянуть, что значение резисторов на затворах транзистора зависит от конкретной их модели. Некоторые типичные значения известны, но их следует определять индивидуально с помощью экспериментов и измерений с помощью осциллографа, чтобы установить наиболее оптимальное время простоя.

Резонатор был намотан на трубу из ПВХ диаметром 110 мм (канализационная) с помощью провода диаметром 0,18 мм; длина самой намотки 45 см. Эти значения довольно велики, так что при желании вы можете легко использовать гораздо меньший резонатор.


Тор изготовлен из алюминиевой гибкой трубки (также стандартная) 80 мм и имеет внешний диаметр 280 мм, что дает ёмкость около 12 пФ. Резонансная частота вторичного контура составляет около 100 кГц.


Первичная обмотка была сделана на трубе из ПВХ диаметром 160 мм, с центром вокруг резонатора. Это обеспечивает хорошую механическую поддержку обмоток. Оригинальный вариант насчитывает 13 витков 2,5 мм2.


Антенна сделана из медного провода 0,8 мм, 4 катушки по 20 мм внизу и около 60 мм основания, она помещена под резонатор вместе со всей электроникой в открытом корпусе. Когда она торчала наверх результат был намного хуже. В схеме транзисторы IRFP 460, диоды Шотки SBL3060, S40D45 и MUR860, потому что были под рукой, все остальное по схеме. GDT на данный момент работает на сердечнике 3E5, но можно и 3E25 диаметром 25 мм. Резисторы 12R вместо 27R.

Как видите, мощное электрическое поле катушки Тесла способно эффективно зажигать газоразрядные лампы, на фото светится трубчатая люминесцентная лампа. Максимальное расстояние, с которого она может засветиться, почти в три раза больше, чем показано на фотографии.


И ещё несколько разрядов на фотографиях:





Разряды имеют около 20-25 сантиметров.

Внимание: человек практически не чувствует поражения таким электрическим током поскольку он не стимулирует нервные окончания, это также означает, что даже относительно сильный удар не влияет на частоту сердечных сокращений мышц, как это происходит при постоянном или переменном напряжении 50 Гц. Тем не менее, несмотря на это и учитывая тот факт, что имеется опасный ток (для SSTC это миллиамперы, но для DRRSTC или SGTC ток может достигать мгновенных значений, рассчитанных в амперах), высокая мощность (малый ток, хотя и умноженный на десятки кВ), которую излучает катушка накачки - ткани человека подвергаются воздействию и это может привести к обширному термическому повреждению. Причём первой страдает нервная система!

Кроме того, следует учитывать, что прерыватель добавляет к излучению низкочастотную форму волны (например 10 - 50 Гц), а вот она уже может быть опасной. Всё это приводит к дополнительному риску, так как человек, который не знает об этом, может сознательно продлить касание, ошибочно думая, что если не чувствуется ток электричества, он в безопасности. Конечно, часто люди, которые касались разрядов от небольших катушек, не чувствовали негативных последствий (или, скорее, они были слишком малы, чтобы быть очевидными), но также есть случаи, когда игры с DRSSTC заканчивались парастазами и другими заболеваниями. Так что будьте осторожны с ВВ всегда!

🗊Презентация Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ

Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №1
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №2
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №3
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №4
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №5
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №6
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №7
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №8
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №9
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №10
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №11
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №12
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №13
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №14
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №15
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №16
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №17
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №18
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №19
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №20
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №21
Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ, слайд №22

 Разъединители линейные рубящего типа (РЛР) Тесла на 10 и 20 кВ

Слайд 1

 Основные технические параметры РЛР Тесла

Слайд 2

 Разрешительная документация (Патент)

Слайд 3

 Протокол заседания НТС ПАО «МОЭСК»

Слайд 4

 Схема монтажа РЛР Тесла на опоре

Слайд 6

 РЛР Тесла 10 РЛР Тесла 10

Слайд 7

 Дополнительные комплектующие (общий вид)

Слайд 8

 Дополнительная траверса и кабельный зажим

Слайд 9

 Сравнение РЛР Тесла, РЛК и РЛНД

Слайд 10

 Сравнение с аналогами РЛР Тесла 10

Слайд 11

 РЛР Тесла 10 РЛР Тесла 10

Слайд 12

 РЛР Тесла 10 РЛР Тесла 10

Слайд 13

 РЛР Тесла 10 РЛР Тесла 10

Слайд 14

 РЛР Тесла 10 РЛР Тесла 10

Слайд 15

 РЛР Тесла 10 РЛР Тесла 10

Слайд 16

 РЛР Тесла 10 РЛР Тесла 10

Слайд 17

 РЛР Тесла 10 РЛР Тесла 10

Слайд 18

 РЛР Тесла 10 РЛР Тесла 10

Слайд 19

 Комплект поставки

Слайд 20

 Упаковка Разъединители со всеми комплектующими – по 2 шт. на одном европаллете (1.200*800 мм). Тяги упакованы в отдельную пачку, стянуты хомутами. Все разъединители упакованы в плотную стрейч-пленку, защищающую их от пыли и влаги.

Слайд 21

Как сделать катушку тесла своими руками?

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

катушка тесла своими руками

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.
  3. Вторичный контур.

Составные части

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух — образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:

  1. Для питания потребуется 12 – 19 В постоянного напряжения. Подойдёт машинный аккумулятор, зарядное устройство от ноутбука или понижающий трансформатор с диодным мостом, для получения постоянного тока.
  2. Найдём детали для первичного контура:

Вторичный контур

После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

простейшая схема

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Подключение транзистора

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Мощная катушка Тесла

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

Схема трансформатора Тесла

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Для тех, кому не терпится соорудить нечто необычное, что поразит окружающих, и сделать это своими руками – трансформатор Тесла будет идеальным вариантом. Процесс конструирования увлекает, а сочетание сразу нескольких физических эффектов в одном относительно простом устройстве приводит в восторг и любителей, и профессионалов.

Несмотря на простоту устройства, смастерить теслу не так уж просто. Принцип трансформатора основан на катушках: первичка с малым количеством витков, которая создает искровой контур, и вторичная обмотка, представляющая собою прямую катушку провода. Резонанс частот колебания обмоток вызывает высокое переменное напряжение между двумя концами катушки.

Работа трансформатора тесла

Как правильно называть устройство

Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как:

  1. Трансформатор Тесла.
  2. Катушка Тесла.
  3. Тесла.

Также существуют сленговые названия трансформатора Тесла, некоторые из них:

  1. Катуха (Котуха).
  2. Койл.

Часто трансформатор называют его типом – СГТЦ, ССТЦ и так далее.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Принцип работы

Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

Катушка тесла

Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Аналогия с качелями

Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.

Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).

Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.

Основные виды катушек

Как выглядит тесла

Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ).

С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла.

Типы катушек принято называть из английских аббревиатур. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода. Самые распространенные типы катушек тесла рассмотрим ниже.

SGTC (СГТЦ, Spark Gap Tesla Coil)

Трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.

VTTC (ВТТЦ, Vacuum Tube Tesla Coil

Трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.

SSTC (ССТЦ, Solid State Tesla Coil)

Трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой, может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).

Solid State Tesla Coil катушка

DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil)

Трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше, чем у SGTC, а управляемость немногим хуже, чем у SSTC.

Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.

Основные детали катушки

Несмотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажем о основных деталях теслы сверху вниз.

Основные детали трансформатора тесла

Тороид

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий. Выполняет три функции:

  1. Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
  2. Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
  3. Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Вторичка

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на тесле, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Также в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи. Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

Заземление

Очень важная деталь теслы. Очень часто задают вопрос – куда же бьют стримеры? Отвечаем на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно.

Теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Область применения

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В таблице ниже представлены эффекты, возникающие во время работы трансформатора тесла.

Эффекты от трансформатора Тесла

В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Схема для самостоятельной сборки

В данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить. Начнем с МОТов.

Такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению.

Схема самодельной сборки теслы

Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

Моты на самодельную теслу

У всех МОТов «первичка» намотана внизу, «вторичка» сверху. Делается это для хорошей изоляции обмоток.

На «вторичке», а иногда и на «первичке» намотана накальная обмотка магнетрона, около 3,6 вольт.

Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты.

Основное их назначение — замкнуть на себя часть создаваемого «первичкой» магнитного потока.

Таким образом ограничить магнитный поток через «вторичку» и её выходной ток на некотором уровне.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!).

Фильтр для самодельной теслы

Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты.

В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Искровик, который нужен для коммутации питания и возбуждения колебаний в контуре.

Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание!

искровик для самодельного трансформатора

Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дроселей — когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью.

Наконец-то очередь дошла и до самого трансформатора Теслы: первичная обмотка состоит из 7-9 витков провода очень большого сечения.

Впрочем, подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться.

Катушка тесла

На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) .

Тор можно изготовить из вентиляционной гофры. На этом все. Помните о безопасности и желаем удачи в самостоятельной сборке.

Заключение

Читайте также: