Температура газов образующихся при сгорании топлива в цилиндрах двигателя автомобиля 800 градусов

Обновлено: 16.05.2024

Процесс сгорания топлива в двигателе

При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.

Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.

Сгорание рабочей смеси в двигателях с искровым зажиганием

О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.

Индикаторная диаграмма карбюраторного двигателя

Процесс сгорания условно делят на три фазы.

Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.

Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.

Продолжительность первой фазы зависит от ряда факторов.

Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.

На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.

Влияние степени сжатия

При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.

Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.

Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.

Влияние угла опережения зажигания

Влияние угла фз, опережения зажигания

Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.

Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.

При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.

Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.

Влияние состава рабочей смеси

Влияние частоты вращения коленчатого вала

Влияние частоты вращения n и угла фз

При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.

Детонация

В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.

Основные причины появления детонации:

  • применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
  • повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
  • увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.

На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.

Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.

Преждевременное воспламенение рабочей смеси

Воспламенение от сжатия при выключенном зажигании

Сгорание рабочей смеси в дизелях

Индикаторная диаграмма дизеля

Период сгорания топлива в цилиндре дизеля условно делят на три фазы:

Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.

Период задержки воспламенения

За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.

Рассмотрим влияние каждого фактора на величину Qi.

Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.

Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.

Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.

Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.

Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.

Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.

Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.

Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.

Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума - давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть - при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000-5-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 - постоянный (стехиометрический) коэффици­ент для данного топлива - теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 ("богатая" смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания - это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания - пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла - чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла - слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее - до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации - характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания - дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это - поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована "горячая" свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить "на слух" от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.

Температура горения. Виды температур горения: калориметрическая, теоретическая и практическая

В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tx — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха а = 1,0 и при температуре газа и воздуха, равной 0°C:

tx = Qh /(IVcv) (8.11)

где QH — низшая теплота сгорания газа, кДж/м3; IVcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tx (кДж/(м3*°С).

В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (=2000°С), при а = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется. Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.5. При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25-30°С.

Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tx тем, что температура газа и воздуха, а также коэффициент избытка воздуха а принимаются по их действительным значениям. Определить tK можно по формуле:

tк = (Qн + qфиз)/(ΣVcp) (8.12)

где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.

Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик.

Таблица 8.3.

Средняя объемная теплоемкость газов, кДж/(м3•°С)

Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.

Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для СУГ при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5-8.7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).

Таблица 8.4.

Жаропроизводительность газов в сухом воздухе

Простой газ Жаропроизводительность, °С Сложный газ усредненного состава Приближенная жаропроизводительность, °С
Водород 2235 Природный газовых месторождений 2040
Оксид углерода 2370 Природный нефтяных месторождений 2080
Метан 2043 Коксовый 2120
Этан 2097 Высокотемпературной перегонки сланцев 1980
Пропан 2110 Парокислородного дутья под давлением 2050
Бутан 2118 Генераторный из жирных углей 1750
Пентан 2119 Генераторный паровоздушного дутья из тощих топлив 1670
Этилен 2284 Сжиженный (50% С3Н4+50% С4Н10) 2115
Ацетилен 2620 Водяной 2210

Таблица 8.5.

Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха а

температура горения

Коэффициент избытка воздуха а Калориметрическая

температура горения

Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:

СО2 ‹–› СО + 0,5О2 — 283 мДж/моль (8.13)

Н2О ‹–› Н2 + 0,5О2 — 242 мДж/моль (8.14)

При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.

Таблица 8.6.

Калориметрическая температура горения природного газа tу, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)

Коэффициент избытка воздуха а Температура сухого воздуха, °С
20 100 200 300 400 500 600 700 800
0,5 1380 1430 1500 1545 1680 1680 1740 1810 1860
0,6 1610 1650 1715 1780 1840 1900 1960 2015 2150
0,7 1730 1780 1840 1915 1970 2040 2100 2200 2250
0,8 1880 1940 2010 2060 2130 2200 2260 2330 2390
0,9 1980 2030 2090 2150 2220 2290 2360 2420 2500
1,0 2050 2120 2200 2250 2320 2385 2450 2510 2560
1,2 1810 1860 1930 2000 2070 2140 2200 2280 2350
1,4 1610 1660 1740 1800 2870 1950 2030 2100 2160
1,6 1450 1510 1560 1640 1730 1800 1860 1950 2030
1,8 1320 1370 1460 1520 1590 1670 1740 1830 1920
2,0 1220 1270 1360 1420 1490 1570 1640 1720 1820

Таблица 8.7.

Калориметрическая температура горения tK технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха а

Коэффициент избытка воздуха а Калориметрическая температура горения tH, °С Коэффициент избытка воздуха а Калориметрическая температура горения tK, °С
1,0 2110 1,45 1580
1,02 2080 1,48 1560
1,04 2050 1,50 1540
1,05 2030 1,55 1500
1,07 2010 1,60 1470
1,10 1970 1,65 1430
1,12 1950 1,70 1390
1,15 1910 1,75 1360
1,20 1840 1,80 1340
1,25 1780 1,85 1300
1,27 1750 1,90 1270
1,30 1730 1,95 1240
1,35 1670 2,00 1210
1,40 1630 2,10 1170

Теоретическая температура горения может быть определена по следующей формуле:

tT = (Qн + qфиз – qдис)/(ΣVcp) (8.15)

где qduc — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/ м3; IVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3газа.

Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве. На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.

Действительная (расчетная) температура продуктов сгорания td — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:

где п — т. н. пирометрический коэффициент, укладывающийся в пределах:

  • для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75-0,85;
  • для герметичных печей без теплоизоляции — 0,70-0,75;
  • для экранированных топок котлов — 0,60-0,75.

В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5-10 мм от вершины конусного фронта горения, приведены в табл. 8.9. Анализ приведенных данных показывает, что максимальные температуры в пламени меньше жаропроизводительности (за счет затрат тепла на диссоциацию Н2О и СО2 и отвода теплоты из пламенной зоны).

Сгорание — бензин

Сгорание бензина с детонацией сопровождается появлением резких металлических стуков, черного дыма на выхлопе, увеличением расхода бензина, снижением мощности двигателя и другими отрицательными явлениями.

Сгорание бензина в двигателе зависит и от коэффициента избытка воздуха. При значениях а 0 9 — j — 1 1 скорость протекания пред-пламенных процессов окисления в рабочей смеси наибольшая. Поэтому при этих значениях а создаются наиболее благоприятные условия для возникновения детонации.

После сгорания бензина общая масса таких загрязнителей значительно увеличивалась вместе с общим перераспределением их количеств. Процентное содержание бензола в конденсате автомобильных выхлопных газов примерно в 1 7 раза превышало его содержание в бензине; содержание толуола было в 3 раза больше, а ксилола — в 30 раз больше. Известно, что при этом образуются кислородные соединения, а также резко возрастает число ионов — характерных для более тяжелых ненасыщенных соединений олефино-вого или циклопарафинового рядов и ацетиленового или диенового рядов, особенно последнего. Вообще говоря, изменения, происходившие в камере Haagen-Smit, напоминали изменения, необходимые для того, чтобы придать составу типичных проб выхлопного газа автомобилей сходство с характерными пробами смога в Лос-Анжелосе.

Теплота сгорания бензина зависит от его химического состава. Поэтому углеводороды, богатые водородом ( например, парафиновые), имеют большую массовую теплоту сгорания.

Продукты сгорания бензина расширяются в ДВС по политропе п1 27 от 30 до 3 ат. Начальная температура газов 2100 С; массовый состав продуктов сгорания 1 кг бензина следующий: СО23 135 кг, Н2 1 305 кг, О20 34 кг, N2 12 61 кг. Определить работу расширения этих газов, если одновременно подается в цилиндр 2 г бензина.

Влияние ТЭС на нагарообразование в двигателе.

При сгорании бензина с ТЭС образуется нагар, содержащий окись свинца.

При сгорании бензинов в поршневых двигателях внутреннего сгорания почти все образующиеся продукты выносятся с отработанными газами. Лишь сравнительно небольшая часть продуктов неполного сгорания топлива и масла, небольшое количество неорганических соединений, образовавшихся из элементов, вносимых с топливом, воздухом и маслом, осаждаются в виде нагара.

При сгорании бензина с тетраэтилсвинцом, по-видимому, образуется окись свинца, которая плавится только при температуре 900 С и может испариться при очень высокой температуре, превышающей среднюю температуру в цилиндре двигателя. Для предотвращения отложения окиси свинца в двигателе в этиловую жидкость вводят специальные вещества — выноси-тели. Выносителями служат галоидопроизводные углеводородов. Обычно это соединения, содержащие бром и хлор, которые тоже сгорают и связывают свинец в новых бромистых и хлористых соединениях.

Влияние ТЭС на нагарообразование в двигателе.

При сгорании бензина с ТЭС образуется нагар, содержащий окись свинца.

При сгорании бензина, содержащего чистый ТЭС, в моторе отлагается налет свинцовых соединений. Состав этиловой жидкости марки Р-9 ( по весу): тетраэтилсвинца 54 0 %, бромэтана 33 0 %, монохлорнафталина 6 8 0 5 %, наполнителя — авиационного — бензина — до 100 %; красителя темно-красного 1 г на 1 кг смеси.

При сгорании бензина, содержащего ТЭС, в двигателе образуется окись свища, имеющая низкую летучесть; так как температура плавления окиси свинца довольно высока ( 888), часть ее ( около 10 %, считая на свинец, введенный с бензином ) отлагается в виде твердого осадка на стенках камеры сгорания, свечах и клапанах, что приводит к быстрому выходу двигателя из строя.

При сгорании бензина в двигателе автомобиля также образуются меньшие молекулы и происходит распределение выделяемой энергии в большем объеме.

Раскаленные от сгорания бензина газы обтекают теплообменник 8 ( внутри со стороны камеры сгорания и далее, через окна 5 снаружи, проходя по камере отработавших газов 6) и нагревают воздух в канале теплообменника. Далее горячие отработавшие газы по выпускной трубе 7 подаются под поддон картера двигателя и подогревают двигатель снаружи, а горячий воздух из теплообменника подается через сапун в картер двигателя и подогревает двигатель изнутри. Через 1 5 — 2 мин после начала подогрева свеча накаливания выключается и горение в подогревателе продолжается без ее участия. Спустя 7 — 13 мин с момента получения импульса на пуск двигателя, масло в картере прогревается до температуры 30 С ( при температуре окружающей среды до — 25 С) и начинается подача импульсов пуска агрегата, после осуществления которого подогреватель выключается.

1. Сгорание топлива в двигателе

Под "сгоранием" применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов и содержащихся в топливе соединений с кислородом воздуха. Такая реакция сопровождается свечением и выделением значительного количества тепла. Речь идет о сложном и не до конца изученном процессе. Общая картина физико-химических превращений топлива в процессе горения разработана в трудах Н.Н. Семенова, Ю.Б. Свиридова, А.С. Соколика и других ученых.

Окисление происходит в форме горения при условии быстрого перемещения активных частиц и разветвления цепей реакций. Это возможно только в газовой среде, поэтому жидкое топливо, сначала газифицируется, а затем воспламеняется. Воспламенение жидкого топлива осуществляется как от внешнего источника, так и в результате экзотермических реакций внутри самого топлива.

В составе жидкого топлива преобладают углерод и водород. При сгорании топлива наблюдаются следующие реакции

Сера реагирует с кислородом согласно уравнению

В процессе горения происходят такие процессы: связи в молекулах разрываются, атомы меняют положение, при этом выделяются различные пары и газы (их температура достигает 1500-2400°С), образующие при соединении с кислородом пламя (остаток топлива сгорает без пламени). Углекислый газ, пары воды, окислы серы, если она содержится в топливе, – конечные продукты горения.

От количества подаваемого воздуха во многом зависит процесс сгорания. Горение протекает медленно, температура невысока, если его недостаточно. Кроме того, при этом образуются продукты неполного сгорания (окись углерода, сажа и др.), а отработавшие газы становятся темными и даже черными. Если количество воздуха выше определенного предела, то много тепла будет расходоваться на нагревание азота – основного компонента воздуха – и избыточного кислорода; тогда температура снижается, скорость сгорания уменьшается и, как следствие, перерасходуется топливо.

Количество воздуха в горючей смеси, теоретически необходимое для полного сгорания 1 кг топлива, называют стехиометрическим. Для некоторых топлив эти значения (в килограммах) следующие:

Полного сгорания топлива при условии наличия теоретически необходимого количества воздуха в действительности не происходит. Состав топливо-воздушной смеси, поступающей в камеры сгорания, при различных условиях и режимах работы двигателя может не совпадать с теоретически необходимым. Избытку или недостатку воздуха в смеси соответствует коэффициент избытка воздуха α, представляющий отношение массы действительно расходуемого воздуха к массе воздуха, теоретически необходимого для полного сгорания топлива (стехиометрическому)

где L – масса действительно расходуемого воздуха;

L0 – масса воздуха, теоретически необходимого для полного сгорания топлива.

Горючую смесь стехиометрического (теоретического) состава называют нормальной при α = 1, богатая смесь характеризуется значением α < 1, бедная α > 1.

Коэффициент избытка воздуха при неполном сгорании определяются по формуле:

а при полном – по формуле:

где O2 ,CO, N2 – процентное содержание в продуктах сгорания кислорода, окиси углерода (определяют анализом на специальных приборах, называемых газоанализаторами) и азота (подсчитывают по разности

В бедных смесях (α > 1) топливо сгорает полностью, выделяя всю химическую энергию. В богатых смесях (α < 1) воздуха для полного сгорания недостаточно, поэтому они менее экономичны. В то же время богатые смеси горят быстрее и устойчивее, выделяя за единицу времени больше тепла, чем при сгорании стехиометрической и бедной смеси, и двигатель развивает большую мощность. Поэтому бедные смеси называют экономичными, а богатые смеси - мощностными. Величина α зависит от вида применяемого топлива, условий его сжигания, конструкции двигателя (табл. 1).

Двигатели внутреннего сгорания в обычных условиях работают на слегка обедненной рабочей смеси, что обеспечивает наиболее экономичный режим. При перегрузках прибегают к некоторому переобогащению смеси, хотя в этом случае топливо расходуется неэкономно.

Таблица 1 Ориентировочные значения коэффициента избытка воздуха

Бурый уголь, торф, дрова

Компоненты отработавших газов по характеру их воздействия на человека подразделяют на ядовитые (окись углерода, соединения свинца), канцерогенные бенз(а)пирен, раздражающие (окислы азота, серные соединения, альдегиды) и загрязняющие (сажа и альдегиды).

Продукты неполного сгорания топлива загрязняют, как известно, окружающую атмосферу, оказывают вредное действие на живые организмы и растительный мир. Поэтому наряду с обеспечением полного сгорания топлива, что повышает экономичность двигателя, не меньшее значение имеет проблема снижения токсичности отработавших газов автомобиля.

Автомобильные топлива и продукты их сгорания в общем загрязнении атмосферного воздуха могут составлять в крупных городах и ряде регионов страны более 80%. В табл. 2. представлен примерный состав отработавших газов автомобильных двигателей.

Таблица 2 Основной состав отработавших газов автомобильных двигателей внутреннего сгорания, млн -1

Бенз(а)пирен, мкг/м 3

Озонообразующий потенциал, мг/миля

Рассмотрим влияние токсичных компонентов отработавших газов на организм человека.

Окись углерода вызывает кислородное голодание организма, поражение центральной нервной системы. Острые отравления окисью углерода могут вызвать головную боль, паралич, кровоизлияние в сетчатку, инфаркт миокарда, потерю сознания и даже привести к смертельному исходу.

Окислы азота (в бензиновых двигателях 95% окислов азота находится в виде , небольшое количество – в виде NО2 и N2О5, попадая в организм человека, соединяются с водой, образуя азотистосодержащие кислоты. Максимальное количество окислов азота образуется при α = 1,05 … 1,10. Симптомы отравления появляются в виде кашля, удушья, возможен нарастающий отек легких.

Альдегиды (акролеин) вызывают сильное раздражение верхних дыхательных путей и воспаление слизистых оболочек глаз.

Углеводороды, оказывая вредное воздействие на центральную нервную систему, при острых отравлениях вызывают головокружение, головную боль, тошноту, судороги, расширение зрачков, расстройство дыхания и сердечной деятельности, поражение печени и почек.

Наибольшей активностью из полициклических ароматических углеводородов обладает бенз(а)пирен: аккумулируясь организмом до критических концентраций, приводит к раковым заболеваниям.

В нашей стране действует система государственных и отраслевых стандартов, определяющих пределы содержания токсичных веществ в отработавших газах автомобилей.

На токсичность отработавших газов влияют состав топливо- воздушной смеси, нагрузка, частота вращения коленчатого вала двигателя, тепловой режим, техническое состояние двигателя и другие факторы. Для улучшения процесса сгорания топлива в двигателях и снижения токсичности отработавших газов необходимы правильный подбор бензина для двигателя в соответствии с климатическими условиями, периодическая промывка системы смазки специальным промывочным маслом, систематическая промывка топливных и воздушного фильтров системы питания двигателя, своевременная регулировка карбюраторов для обеспечения оптимального состава смеси и другие мероприятия экс­плуатационного и организационно-технического характера.

Тепловые двигатели. Коэффициент полезного действия теплового двигателя

В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности




Конспект урока "Тепловые двигатели. Коэффициент полезного действия теплового двигателя"

Данная тема посвящена решению задач на тепловые двигатели и коэффициент полезного действия тепловых двигателей.

Задача 1. В идеальном тепловом двигателе абсолютная температура холодильника вдвое меньше температуры нагревателя. Если, не меняя температуры нагревателя, температуру холодильника понизить второе, то во сколько раз увеличится КПД двигателя?

КПД идеального теплового двигателя определяется по формуле


Применим данную формулу к рассматриваемому тепловому двигателю для двух случаев


Тогда искомое соотношение


Ответ: КПД двигателя увеличится в 1,7 раза.

КПД теплового двигателя

Полезная работа двигателя

Количество теплоты полученное двигателем


КПД идеального теплового двигателя




Ответ: автомобиль проехал 472 км.

Задача 3. В калориметр, содержащий 0,5 кг воды и 0,1 кг льда при температуре 273 К, поместили электрический нагреватель при такой же температуре. Общая теплоемкость калориметра и нагревателя 100 Дж/К. Сколько времени необходимо пропускать ток через нагреватель, чтобы вода в калориметре нагрелась до 373 К и 0,2 кг ее обратились в пар? Нагреватель потребляет мощность 500 Вт, а КПД — 90%.

Запишем формулу, по которой можно рассчитать коэффициент полезного действия рассматриваемой установки


Количество теплоты, выделяемое нагревателем

Количество теплоты для


нагревания калориметра и нагревателя:


Тогда КПД установки







Ответ: ток необходимо пропускать 27,6 мин.

Задача 4. Абсолютная температура нагревателя идеального теплового двигателя в 3 раза выше температуры холодильника. Если за один цикл двигатель поднимает поршень массой 5 кг на высоту 20 м и сжимает при этом пружину жесткостью 625 кН/м на 8 см, то какое количество теплоты получает рабочее тело от нагревателя за один цикл?

КПД идеального теплового двигателя


Полезная работа двигателя представляет собой сумму работы силы тяжести поршня, при его подъеме на заданную высоту, и работы силы упругости пружины при ее сжатии



Искомое количество теплоты




Ответ: рабочее тело за один цикл получает 4,5 кДж теплоты.

Задача 5. Кожух станкового пулемета наполнен 4 кг воды при температуре 0 о С. Скорость стрельбы 10 выстрелов в секунду. Заряд пороха в патроне 3,2 г. За какое время выкипит половина воды в кожухе при непрерывной стрельбе? Считать, что на нагревание ствола идет 30% теплоты, выделенной при сгорании топлива. Какова начальная скорость пули, если ее масса 9,6 г, а КПД пулемета 20%?

Читайте также: