Доработка вентиляции картерных газов

Добавил пользователь Morpheus
Обновлено: 05.10.2024

Доработка малого контура вентиляции картерных газов ВАЗ

Всем привет! Недавно рассматривая фотку 127 мотора, заметил один интересный момент. На дроссельной заслонке отсутствует штуцер под шланг малой вентиляции, а сам шланг подключен на прямую в ресивер.

Решил изучить вопрос подробней, и как оказалось схожим образом выполнена вентиляция и на 8 клапанном гранта моторе.

Буквально по первой ссылке наткнулся на форум где эта тема уже давно обсосана, причем ещё до появления новых моторов с подобной схемой. www.autolada.ru/viewtopic.php?t=239559&start=575

Перенос малого контура вентиляции из дросселя в ресивер своего рода доработка, направленная на уменьшение рывков на переходных режимах.
Суть доработки заключается в следующем: отсоединяете тонкий шланг вентиляции картера от дроссельного узла и втыкаете его в свободный штуцер на впускном ресивере (тот что закрыт заглушкой). Освободившийся штуцер на ДУ закрываете заглушкой. Тем самым вы увеличиваете поток воздуха, в обход дроссельной заслонки и резкое её захлопывание не отзовётся рывком движка. Заодно увеличивается вентиляция картера — недогоревшие продукты прорывающиеся в картер сквозь поршневые кольца отлично подготовлены для горения и создают дополнительную тягу на низах (особенно заметно на 16вэ).

Когда то, я слышал про подобную доработку, но суть её была немного в другом, там путем рассверливания жиклера МВ в дросселе — также увеличивали поток воздух в обход ДЗ.
Тогда мне было лениво сверлить дроссель, а вот перекинуть шланг дело не хитрое, и я решил попробовать.

Старый шланг оказался коротковат, да и задубел он конкретно, пришлось купить пол метра шланга за 60р. Вся процедура занимает не больше пяти минут, но делать всё лучше на холодной машине.

После переделки расход воздуха на хх и шаг рхх остались неизменными.

Выводы:
Ещё одна доработка на ПП ВАЗы из разряда MustHave! Тяга на низах заметно возросла, и это точно не самовнушение. Я даже, перекидывал шланг пару раз для того что бы убедится, что эффект есть. Мотор стал эластичнее, особенно это заметно на самых низах, где раньше был ощутимый провал. Так же с помощью такой схемы МВ, мы сглаживаем переходный процесс "холостой ход/разгон" тем что немного воздуха идёт в обход ДЗ и РХХ. Таким образом РХХ влияет на кол-во воздуха более плавно.

Ещё один немаловажный плюс в том, что дроссельный узел останется чистым, внезапно не забьется, и давлением не выдавит заглушки ГБЦ, как уже было однажды.
www.drive2.ru/l/5119467/

Ещё одним плюсом этой доработки, является снижение избыточного давление в двигателе, вплоть до разряжения. Часто бывает, что мотор потеет, сопливит из под какого ни будь датчика или сальника. Говорят после этой доработки, со временем, высыхают все масленые потеки.

Из возможных минусов, на высоких оборотах, при торможении двигателем, когда дроссель закрыт и работает только малая вентиляция, масло в ресивер будет попадать больше, но я не вижу в этом особого криминала.

Если к подобной конструкции пришел Автоваз на новых моторах, то думаю доработки имеет смысл.

Кстати, если у кого ни будь есть под рукой ресивер нового образца с подобной схемой, интересно было бы узнать, есть ли калибровочное отверстие( жиклер, клапан, или что то подобное) в МВ как в ДУ при старой схеме, или просто штуцер как в этой доработке?

Ребята с форума предположили два варианта объяснения приходу на низах. Оба варианта основаны на разных точках зрения, касательно горючести картерных газов. (далее копипаст с форума autolada.ru)

Первый вариант
На самом деле прихода нет, есть уход низов в штатной схеме. То, что мы наблюдаем, есть устранение этого ухода и восстановление нормальной работы двигателя.
1. Картерные газы не горючи. Желающие убедиться — глушим МВ, даем двигателю поработать, отсоединяем с гофры шланг БВ и подносим зажигалку. Картерные газы — перегретая смесь окисидов углерода разных степеней с другими продуктами горения, насыщенная масляным туманом и слегонца сдобренная парами бензина. Фактически это есть негорючее гумно, балласт, с присутствием которого на впуске мы вынуждены мириться из экологических соображений.
2. Почему со штатной схемой вентиляции наблюдается уход низов? Штатная схема ни разу не справляется, в результате в картере постоянно накапливается нехилый запас этого гумна. На открытом дросселе давление в картере резко растет и концентрированное нагретое гумно по каналу БВ устремляется в гофру. Двигатель мгновенно затыкается порцией собственных экскрементов с пониженным содержанием кислорода и высокой температурой, в итоге имеем то, что имеем.

3. Постоянная интенсивная продувка снижает концентрацию и температуру картерных газов. На открытом дросселе состав смеси меняется меньше, что субъективно воспринимается нами, как прибавка низов.

4. Откуда в гофре масло? Со штатной схемой концентрированные горячие картерные газы периодически впрыскиваются в холодную гофру. На ее стенках образуется банальный конденсат, продуть который потоком воздуха нереально.

Картерные газы и в стоке идут в ресивер, а далее сжигаются.
Но жиклёр МВ в ДУ мал и рассчитан конструкторами на начало эксплуатации двигателя. С износом двигателя картерных газов становится больше, МВ не справляется и они лезут вгофру (в преддроссельное пространство), как следствие — там масло, а это неблагоприятно влияет на ДМРВ.
Увеличивая МВ мы всего-лишь приводим в норму потоки картерных газов.

Второй вариант.
Картерные газы — это отличное топливо! Это та топливно-воздушная смесь которая не догорела и прорвалась сквозь поршневые кольца. При этом она подогрета и углеводороды в ней в газообразном состоянии (бензин не просто распылён, а испарён) и частично разложены химически на более простые компоненты, которые лучше горят.
Добавляя картерные газы к основной топливо-воздушной смеси мы только улучшаем её качества. Это особенно заметно при переходных процессах на малом газу, когда вентиляция камер сгорания недостаточна.
Единственное НО — следует позаботиться о маслоуловителе т.к. штатный в крышке ГБЦ не очень справляется.

Если вдруг Вы решите попробовать эту доработку, интересно было бы услышать Ваши отзывы, уверен многим эффект понравится. Ставим лайки и репостим, думаю такую доработка захотят попробовать многие.

****UPD 7/12/2015
Уже пол года катаюсь c такой переделкой, никаких проблем. Выявил ещё один приятный плюс, до доработки, после отжигов, было немного масла во впускной гофре, теперь чистота. Масляные пары теперь успевают улететь по малому контуру и в большом их теперь гораздо меньше, а значит и в гофре будет чище.

Просто, но не гениально: что может не работать в системе вентиляции картера?

Иногда с автомобилем случаются вещи, которые сильно расстраивают его владельца. Что-то стал жрать масло, дроссельная заслонка постоянно грязная, масло из всех щелей течёт… Даже воздушный фильтр в этом масле. Наверное, пора думать о «капиталке». Деньги, деньги, деньги. Боль, тоска, безысходность. А может, рано точить бритву и наполнять ванну тёплой водой? Может, не всё так плохо, и решение проблемы кроется в маленькой и не такой уж дорогой детальке со странным названием «клапан PCV»?

Теория газов​

Все мы прекрасно помним, что мотор работает вследствие сгорания топливо-воздушной смеси. В момент, когда в камере сгорания начинается этот очень красивый, но невидимый глазу процесс, там резко возрастает давление. Это давление толкает поршень вниз, поршень давит на свою шейку коленвала, а тот выполняет свою непосредственную работы: преобразует поступательное движение шатуна поршня во вращательное, которое передаёт на маховик двигателя. Картинка идеальная, но в жизни, как вы понимаете, что-то всегда идёт не так. В нашем случае не все газы, образующиеся во время горения, выходят потом через выпускной клапан в систему выпуска. Часть их обязательно прорывается в картер. Грубо говоря – под поршень. Происходит это по простой причине: как бы плотно ни прилегали компрессионные кольца, у них всегда есть хотя бы минимальный зазор – иначе поршень просто не смог бы ходить внутри цилиндра. А на холодном моторе этот зазор ещё больше, так что газ, который находится под очень большим давлением, лазейку в картер мотора всегда найдёт. Чем это грозит?

В этих газах есть всё то, чего не любит моторное масло. Не полностью сгоревший бензин, пары воды (они всегда есть в воздухе), частички нагара – всё это оседает в моторном масле. Ничего хорошего, конечно, после этого не происходит: масло усиленно стареет и перестаёт нормально работать. Но это не самое страшное.

Гораздо хуже, что в картере просто не должно быть высокого давления, а картерные газы его сильно увеличивают. Последствия этого процесса очень неприятные. Газы буквально распирают мотор, и он начинает выдавливать из себя всё лишнее. А когда мотор «пучит», лишним ему кажется всё: и картерные газы, и масло. Газы стараются выйти через масляный щуп, выталкивая его наружу, через маслозаливную горловину и все прочие места. В том числе – и через все уплотнения и сальники. Если ему удаются вытолкнуть сальник коленвала, то через него потечёт и масло.

Одним словом, как-то эти газы надо выводить. И для этого придумали систему вентиляции картерных газов.

Открыто и закрыто

Изначально система вентиляции была примитивной – открытого типа (или эжекционная). Помните такое потрясающее слово – сапун? Вот это и было той самой открытой системой вентиляции. Через гордо торчащий сапун в атмосферу выбрасывались картерные газы со всеми их прелестями в виде сажи, масла и прочей гадости. А иногда оттуда ничего не выбрасывалось, потому что особой эффективностью такая система не отличалась.

Не отличалась хотя бы просто потому, что на холостых оборотах давления картерных газов не хватало, чтобы они выводились из мотора. Всё прорвавшееся в картер в нём и откладывалось в масло. Кроме того, всегда была вероятность через сапун хватануть грязного воздуха, который потом оказался бы в картере. Там все примеси из этого воздуха осели бы в масло, а это существенно снизило бы ресурс цилиндро-поршневой группы. В общем, ничего хорошего в сапуне не было, и система прямо-таки требовала серьёзного пересмотра. И в результате такого пересмотра появилась современная система PCV (positive crankcase ventilation) – принудительная система вентиляции.

Системы PCV отличаются по реализации. Они могут быть проще или сложнее, с двумя контурами, с эжекторным насосом, с редукционным клапаном. Но мы рассмотрим самую простую и распространённую систему с одним клапаном PCV. Итак, как это работает?

Разработчики этой системы использовали особенность впускного коллектора: в нём создаётся разрежение. Особенно сильным оно бывает на холостых или минимальных оборотах. Если соединить тот самый воображаемый сапун открытой системы с впускным коллектором, разрежение будет вытягивать картерные газы. Кроме того, они будут поступать опять во впуск, а не в атмосферу, что люто обрадует экологов. Остаётся только решить две проблемы: как дозировать это самое «всасывание» со стороны коллектора и как не дать вместе с картерными газами попасть во впуск маслу и прочим ненужным там фракциям.


Решением первой задачи занимается как раз тот самый клапан PCV. Во время работы на минимальных оборотах он практически закрыт. А значит, в коллекторе остаётся разрежение, а так как в таком режиме выброс картерных газов минимален, даже небольшого их отвода вполне достаточно. По мере роста оборотов коленвала клапан начинает открываться. Это необходимо по двум причинам: во-первых, разрежение падает, а значит, нужно более интенсивно откачивать газы, а во-вторых, количество этих газов растёт. Открытие клапана позволяет удалять большое количество газов даже при небольшом разрежении во впускном коллекторе.

Второй вопрос – это очистка картерных газов. Тут есть несколько способов, но наиболее простой и очевидный – это установка маслоотделителя. В нём есть сложный лабиринт, по которому движутся газы. Во время прохождения лабиринта скорость движения падает, а капельки масла оседают на его стенках, откуда стекают обратно в картер. Более-менее чистый воздух после этого поступает опять во впуск. Конечно, маслоотделители бывают разных конструкций – лабиринтные или центробежные, но задачу они решают одну и ту же.

У системы PCV есть ещё одно небольшое, но важное преимущество: после пуска холодного мотора в мороз в дроссельную заслонку попадает и тёплый воздух из системы вентиляции. Прогрев проходит быстрее и теоретически – менее травматично для холодного пуска. Правда, при условии, что система исправна. А она иногда всё-таки выходит из строя.

Работает или нет?

Существуют десятки способов проверить, работает ли клапан PCV (для краткости – КВКГ, клапан вентиляции картерных газов). Почти все они порождены сумрачным народным гением и сводятся к тому, чтобы проверить, прут ли газы из мотора или нет. Наиболее простой способ – открутить крышку маслозаливной горловины и посмотреть, что произойдёт дальше. Если приложить руку и почувствовать давление валящих оттуда газов – КВКГ не работает. Отчасти правда в этом есть, но не во всём. Потому что если, например, поршневая очень устала жить, то повышенное давление тоже будет. Даже если клапан работает. А на некоторых моторах (например, BMW с Valvetronic, N42, N46 и иже с ними) даже с исправной системой вентиляции некоторое давление может быть, так что этот способ помогает мало. То же самое и насчёт всасывания воздуха. Мол, в исправном моторе крышка будет присасываться к горловине. Обычно – да, но не обязательно. Если всасывается очень сильно, то, возможно, клапан заклинил в открытом положении или у него порвалась мембрана.


Всё то же самое относится и к проверке воздушного фильтра. Масло на этом фильтре – это не обязательно признак почившей системы вентиляции. Оно там может быть из-за той же убитой поршневой группы. Однако если вы уверены, что ЦПГ исправна, а масляный щуп вылетает со своего места, это действительно может быть признаком неисправности системы ВКГ. Особенно если есть сопутствующие проблемы (например, то же масло на воздушном фильтре).

Есть ещё один способ проверки, о котором часто говорят в Интернете, – снять клапан и потрясти им. Если внутри ничего не бренчит, он заклинил. И это тоже не лучший способ диагностики.

Гораздо лучше снять патрубки вентиляции (обычно это сделать не сложно) и посмотреть, что у них там внутри. Если они забиты отложениями, то клапан, скорее всего, тоже забит и, вероятно, не работает. В этом случае патрубки стоит промыть, а клапан просто поставить новый. Заодно есть повод как минимум проверить компрессию: может оказаться, что этот шлак в системе неспроста, и пора подумать о ремонте мотора.


Не стоит забывать о том, что лабиринт маслоотделителя тоже со временем покрывается отложениями. Это приводит к похожим симптомам: в картере растёт давление, возможны течи масла через уплотнения и сальники. В этом случае всё приходится промывать. Самое печальное, что грязные картерные газы могут загадить не только дроссельную заслонку и весь впуск, но и сократить этой дрянью жизнь другой системе – системе рециркуляции отработавших газов EGR. Так что затягивать с ремонтом вентиляции не стоит.

Ну и последнее. Когда маслоотделитель забит, масло может попадать прямо во впуск. Это приводит к дымности, а если система вообще на ладан дышит, то к росту расхода масла. Всё это по симптомам похоже на износ маслоотражательных колпачков или поршневых колец. Не стоит сразу лезть в кубышку (если она вообще есть) и торопиться всё это менять. Иногда достаточно привести в порядок систему вентиляции картерных газов, и проблема решится малой кровью.

Доработка вентиляции картера. Улучшения с пользой


Стоит отметить тот факт, что доработка вентиляции картера, позволяет решить некоторые проблемы с излишним выделением масляного конденсата и прочих неполадок функциональности рассматриваемого узла. Причин скапливания масла на стенках впускной системы силового агрегата, может быть несколько. Основные способствующие факторы с вязаны с отсутствием гидравлического забора, направленного на беспрепятственное стекание масла в полость цилиндров по схеме, обратной поступлению.

Кроме того, на появление представленной неисправности, влияет малое количество поточных поворотов, что не дает возможности набрать необходимой скорости выделяемым газам. Крупные частицы продукта конструкция в состоянии отфильтровать, но, мелкие составляющие игнорируются, по причине недоработок базовой основы.

Содержание


Первый вариант

Доработка вентиляции картера может быть произведена несколькими способами. Например, на М50 можно поставить блок маслоотделителя от модели М52. Однако. Данная манипуляция не решает проблемы наличия емкости для слива жидкости, внешней эстетики и необходимости размещения гидрозатвора.

Одним из актуальных решений рассматриваемой проблемы, станет установка фильтра категории НЕРА, которые содержат проволочные и нитяные компоненты, дающие возможность отрегулировать максимально точно количество выделяемых газов. Внутренность маслоотделителя наполняется медными проволочными мочалками. В стандартном исполнении, набивка должна немного выступать за основу крышки. Тщательно протирается гофрированный подвод и дроссельный узел. После выполнения манипуляций, элемент проверяется механической продувкой на предмет изменения пропуска воздуха.

Как показывает практика, эксплуатация автомобиля с улучшенной системой вентиляции картера, не дает повода волноваться об излишнем маслоотделении. Выполненная доработка по принципу «НЕРА», после пробега в 15 тысяч километров, показывает, что в системе исчезло появление масляных пятен, а гофра остается абсолютно сухой. Дроссельный блок также радует чистотой. Примеси оседают на проволочной набивке, которые по законам физики, двигаются в сторону крышки маслоотделителя. Наполнитель периодически требует прочищать выполнением несложной процедуры снятия крышки и промывки ее бензином.


Второй способ модернизации вентиляции картера

  • Отсоединяется тонкий шланг картерной вентиляции от дросселя;
  • Свободный конец подключается к свободному впускному штуцеру на ресивере, с предварительным демонтажем заглушки;


Альтернативные варианты

Следующая версия доработки заключается в монтаже шланга с малым диаметром в цепь вентиляции картера ЭПК клапана модели «Каскад». В режиме холостого хода, следует открыть клапан для стандартного вывода отработанных газов. Учитывая тот факт, что при установлении рассматриваемой системы, прекращается подача вредных примесей через дроссельную заслонку, по причине размыкания цепи. Это весьма актуально, в случае перехода режима работы мотора от холостого хода к малым нагрузкам, когда обеднение топливовоздушной смеси категорически недопустимо. Вентиляция производится через всю магистраль, включая карбюраторный узел.

Модернизация вентиляции картера

Товарищи! Прошу читать внимательней. Если есть вопросы задавайте. Акцент записи идет на минусы связки автомат-кондер-ВАЗ. Если у Вас механика ниже схемы 3 переделка будет избыточна.
Теория
В процессе работы двигателя из надпоршневой полости цилиндра в картер прорываются газы. Эти газы, называемые картерными состоят примерно из равных частей горючей смеси и продуктов полного и частичного сгорания. Вследствие этого картерные газы содержат пары топлива, окислы углерода (в том числе СО), серы, азота, продукты частичного окисления углеводородов топлива, , пары воды. Многие из этих компонентов активно воздействуют на масло, в результате чего оно окисляется, в нем образуются смо­листые и лакообразные вещества, кислоты, соли кислот и др. В результате этого масло теряет свои свойства или, как говорят, стареет. Активные кислоты, образуя с маслом эмульсию, попадают на трущиеся поверхности и вызывают их коррозию.
Для того чтобы свести к минимуму влияние картерных газов и уменьшить интенсивность процесса старения масла, необходимо их удалять из картерного пространства.
Процесс удаления газов называется вентиляцией картерного пространства, а комплекс устройств, обеспечивающих этот про­цесс, — системой вентиляции.
Вентиляция служит также для поддержания в картерном про­странстве давления, близкого к атмосферному. Если удаление газов недостаточно или отсутствует вообще, в картерном пространстве резко повышается давление за счет постоянного притока нового количества газов. Это может привести к выдавливанию масла через сальниковые уплотнения коленчатого вала и другие неплотности картера. Интенсивное удаление картерных газов приводит к подсосу в картер загрязненного пылью и влагой атмосферного воздуха.
Опыт показывает, что стабильность масла значительно повы­шается, если картерное пространство продувать небольшим коли­чеством свежего воздуха. Поэтому существует два типа систем вентиляции: вытяжные, т. е. без продувки картерного пространства воздухом, и приточно-вытяжные — с продувкой. Воздух, поступающий в картер при приточно-вытяжной вентиляции, обя­зательно очищается в самостоятельном фильтре или в воздухо­очистителе системы питания двигателя воздухом.
Картерные газы могут удаляться в атмосферу или возвращаться во впускной тракт двигателя. Системы вентиляции с удалением картерных газов в атмосферу называются открытыми. Системы с удалением газов во впускной тракт — закрытыми системами вентиляции.
Так как картерные газы содержат значительное количество весьма токсичных веществ, то выбрасывание их в атмосферу крайне нежелательно. Схема открытой системы вентиляции изображена на рис. 1, а. В этой системе картерные газы удаляются через эжекционную трубку 1, косой срез которой обращен по потоку воздуха, обтекающего трубку при движении автомобиля. За счет этого у среза трубки создается разрежение, обеспечивающее отсос газов. Чтобы предотвратить прямой выброс капелек масла с картерными газами, эжекционная трубка углублена в камеру 2. Воздух в картер поступает через маслозаливную горловину, крышка 3 которой снабжена фильтрующей набивкой. Такую систему венти­ляции имеют двигатели автомобилей «Запорожец», «Чайка», Урал-375, МАЗ

1 -Схемы вентиляции картерного пространства двигателей: а) открытая; б) закрытая вытяжная; в) закрытая приточно-вытяжная; г), д). е) — кон­струкции автоматических регулирующих клапанов закрытых систем вентиляции

На рис. 1, б показана схема закрытой вытяжной системы вентиляции. Газы отсасываются здесь из-под крышки клапанного механизма через эжекционную трубку 2, выведенную во входную горловину воздухоочистителя. Перед выходом картерных газов из-под крышки клапанного механизма установлена маслоотражательная шторка 1. Смешиваясь с потоком воздуха, картерные газы проходят через фильтрующую набивку 3 воздухоочистителя и осво­бождаются от капелек масла, сконденсировавшихся паров волы и прочих примесей (двигатели МЗМА-408, ЗМЗ-21 и до) Если воздухоочиститель имеет сухой бумажный фильтрующий элемент то картерные газы необходимо отводить во впускной тракт в зону за воздухоочистителем. В этом случае на пути картерных газов Устанавливается самостоятельный фильтрующий элемент. Благодаря простоте конструкции эти системы получили широкое распространение, особенно на зарубежных двигателях.
На рис. 1, в представлена схема закрытой приточно-вытяжной системы вентиляции, где картерные газы по трубке 3 удаляются в задроссельное пространство впускного тракта 4. Следовательно, картерные газы не проходят через дозирующие органы системы питыния и не загрязняют их, однако оказывают влияние на работу — карбюратора 5, снижая разрежение в его каналах. Чтобы свести кминимуму влияние такой системы вентиляции на смесеобразова­ние она снабжается клапанным устройством 2, регулирующим интенсивность удаления картерных газов. На выходе газов из кар­терного пространства установлена маслоулавливающая набивка или маслоотражательный козырек 1. Воздух для продувки картерного пространства поступает через маслозаливную горловину 6, обору­дованную фильтрующим элементом (двигатель ЗИЛ-130 и ряд двигателей американской фирмы «GMC»). Наличие клапанного устрой­ства усложняет систему вентиляции и увеличивает вероятность выхода системы из строя.
Конструкции клапанов, применяемые в системах вентиляции, выполненных по схеме рис. 1, в, показаны на рис. 1, г, д, е. (далее по тексту «PCV клапан»). Принцип работы автоматического клапана типа флуометра (плаваю­щий клапан) рассмотрим по схеме рис. 1, г. Клапан грибовидной формы со сквозными радиальным и аксиальным отверстиями в нера­бочем состоянии отжат пружинкой в крайнее правое положение и своей пяткой закрывает канал, сообщающийся с картерным про­странством. При пуске и работе двигателя на холостом ходу, ког­да во впускном трубопроводе возникают большие разрежения, клапан, преодолевая сопротивление пружинки, подсасывается к каналу, сообщающемуся со впускным трубопроводом, и пере­крывает его своим носком, а картерные газы проходят через калиб­рованные отверстия в самом клапане. По мере открытия дроссель­ной заслонки разрежение во впускном трубопроводе уменьшается, клапан отжимается пружинкой от седла и потоком газов удержи­вается в некотором среднем положении.
Аналогично работает клапан системы вентиляции двигателя ЗИЛ-130, конструкция которого показана на рис. 1, д. В нерабо­чем положении автоматический клапан нижним коническим концом перекрывает канал, соединяющийся с картерным пространством. При пуске и работе на холостом ходу клапан подсасывается вверх иигольчатым носком частично перекрывает выходное отверстие в корпусе клапана. На режимах средних и полных нагрузок клапан опускается и удерживается потоком примерно в среднем положении.
Помимо плавающих автоматических клапанов в системах вентиляции применяются управляемые мембранные клапаны с иглой или золотником, изменяющими проходное сечение канала вентиля­ции в зависимости от режима работы двигателя.
Конструкция мембранного клапана показана на рис. 1, е. (далее по тексту «Редукционный клапан») Корпус 4 клапана над мембраной 1 через отверстие сообщается сатмосферой, а полость под мембраной соединена с впускным трубопроводом. Мембрана, нагруженная пружиной 2, связана штоком с полым золотником 3, который располагается в трубке, соединен­ной с картерным пространством. По мере прикрытия дроссельной заслонки разрежение во впускном трубопроводе и в нижней поло­сти клапана увеличивается. Мембрана прогибается вниз и золотник начинает перекрывать отверстие в трубке, снижая тем самым интенсивность отсоса газов из картерного пространства. Мембран­ные клапаны достаточно эффективны, но из-за сложности и отно­сительной дороговизны широкого распространения в автомобиль­ных двигателях не получили.
Современные устройства для вентиляции картерного простран­ства двигателей представляют собой самостоятельную систему, оказывающую существенное влияние на работу других систем, двигателя.
Источник: Райков И.Я., Рытвинский Г.Н. Двигател внутреннего сгорания, 1971 г.
*Из данной статьи понятно, что еще в середине прошлого века были разработаны сложные системы управления вентиляцией картерных газов. Данные системы и по сей день устанавливаются на модели зарубежных производителей. ВАЗ в этом вопросе, как всегда подотстал. Будем исправлять.

1 схема работы вентиляции картерных газов.

На данных рисунках изображены схемы вентиляции картерных газов, применяемая на всех вазовских семействах двигателей. Одна с тросовым газом, другая с Е-ГАЗом. Разница между ними только во входе малого контура во впуск. Она представляет из себя два контура вентиляции которые работают на разных режимах нагрузки и оборотах.
Описание работы:
Малый контур вентиляции подключен к клапанной крышке и впускному коллектору, в за дроссельное пространство. Данная схема подключения обеспечивает интенсивную вентиляцию картера за счет разряжения, возникающего во впускном коллекторе, при закрытом дросселе. Что бы не возникало такого эффекта, как гипервентиляция, сечение малого контура ограничивается жиклером (впрессованным в шланг при Е-ГАЗе или жиклером в корпусе тросового дросселя), диаметром 1,7 миллиметров. Данный контур работает в районе 800-1500 оборотов.
Большой контур вентиляции подключен к клапанной крышке и воздушному патрубку, в пред дроссельном пространстве. Данная схема подключения обеспечивает интенсивную вентиляцию картера на повышенных оборотах. Сечение большого контура 16-18 миллиметров.
Достоинство: данная схема довольна проста, как в обслуживании так и в реализации.
Недостатки: рассмотрим подробнее основной недостаток. Представим, что машина едет с горки, передача включена. Что в этот момент происходит с двигателем. Повышенные обороты двигателя, при снижении нагрузки, обеспечивают интенсивное охлаждение двигателя. Повышенное давление и расход в масляной системе, улучшит охлаждение и смазку трущихся элементов. А что же расход. По идее мозги отключат подачу топлива, или уменьшат его количество ниже холостого хода. И тут вроде все хорошо, к чему столько букв? Самое интересное начинает происходить системе в вентиляции картерных газов. Двигатель имеет повышенные обороты, допустим 2000-3000. Значит и разряжение создаваемое внутри впускного коллектора будет увеличиваться, двигатель начнет работать как вакуумный насос. Увеличиваться будет и расход картерных газов через малый контур. Вроде то же не плохо. Но картерных газов, при малой нагрузке, так же мало и в картере создастся высокое разряжение (как стало понятно из теоретической части, это не есть хорошо). В результате произойдет следующее, подключится большой контур вентиляции. В нем нет никаких регулирующих клапанов, оба контура подключены в один объем маслоуловителя, а значит сильное разряжение в картере затянет свежую порцию воздуха в обход дросселя. ДМРВ покажет увеличенный расход воздуха, мозги попытаются прикрыть дроссель. Поняв, что это не возможно, он и так закрыт, последует коррекция обедненной смеси увеличением подачи топлива. То же самое будет происходить в пробках, при движении внатяг, при включенном кондиционере, в режиме «Драйв». Получается, что расход только вырастет, но почему так? Проблема в том, что весь внутренний объем двигателя будет работать как параллельный ресивер, весьма значительного объема, подключенный к впуску в обход дросселя. Именно этот объем и будет мешать качественному смеси образованию. Плюс такая система вентиляции сильнее выбрасывает масло в ресивер.
Недоделанная система вентиляции и вызывает сильную вибрацию, рывки и удары в трансмиссию на гранто-калинах с автоматом. Особенно это заметно, когда включен кондиционер и машина едет в пробке. В таком режиме происходит следующее, муфта компрессора подключается, нагрузка возрастает скачкообразно. Воздуха двигателю не хватает, он его начинает тянуть из картера в обход дросселя. Но мозги так же в курсе включения муфты и так же подают больше воздуха, открывая дроссель. Разряжение резко падает, вакуумнику не хватает сил удержать машину. Рывок вперед. Мозги видят увеличение кислорода, перекрывают дроссель. Резкий рост разряжения, вакуумник схватывает. Машина дергается, удар по трансмиссии. И так до бесконечности.

2 схема вентиляции картерных газов

Решение данной проблемы довольно простое, встроить в систему вентиляции картера клапана, которые будут перекрывать контуры в переходных режимах. Начнем с «PCV клапана». На схеме видно место его установки. Он подключается последовательно в малый контур перекрывая его при увеличении и отсутствии разряжения. Простое и гениальное изобретение. Данная схема требует минимум переделок и используется на подавляющем большинстве иномарок.
Достоинство: простая схема, минимум переделок, низкая цена в районе 500-600 рублей.
Недостатки: недостаток именно этой схемы, только в точке подключения «PCV клапана». Многие видели, что малый контур на наших движках представляет собой тонкую трубку идущую снизу клапанной крышки. Ее производительности может не хватить для работы «PCV клапана».
*При подключении клапана PCV в малый контур на Е-ГАЗе используйте новый шланг! На тросовом дросселе подключайте в ресивер, не в дроссель!

3 схема вентиляции картерных газов

Проблема с производительностью решается путем переноса точки подключения параллельно с большим кругом. Так как оба отвода, малого и большого контура, используют один объем маслоуловителя проблем с их работой не возникнет.
Достоинство: увеличиваем производительность малого круга.
Недостатки: усложнение конструкции.
*В принципе, для авто с механикой, достаточно будет установить только «PCV клапан». На механике не ощущается, с такой силой, переходной процесс в отличии от автомата.
4 схема вентиляции картерных газов

Из теории мы помним, что есть еще «Редукционный клапан». На схеме видно, что «Редукционный клапан» подключается последовательно в большой круг вентиляции. Тем самым он регулирует поток картерных газов на повышенных оборотах и в переходных процессах. Если честно его решил установить только по причине изменения пути малого контура, из клапанной крышки в коллектор. Не думаю, что без него будут проблемы. В некоторых системах отвод большого и малого контура могут идти параллельно.
Достоинство: полный контроль за потоками картерных газов между малым и большим контуром. Улучшение работы двигателя, снижение вибронагруженности.
Недостатки: усложнение конструкции.

5 схема вентиляции картерных газов

Но и это еще не все. Концерн VAG использует на своих моделях, с автоматом, еще более интересную систему вентиляции картерных газов. Для улучшения работы тормозной системы, облегчения процесса удержания машины на тормозах в режиме «D», применен «Эжекционный насос». Вещь очень интересная, за счет потока картерных газов, от малого контура, происходит усиление разряжения в трубке идущей к вакуумному усилителю. Происходит это на малых оборотах, что очень помогает при езде по пробкам. Постоянно держать ногу на тормозе не очень легко, а этот насос задачу облегчает.
Достоинства: вибрации, провалы, трансмиссионные удары все это остается в прошлом. Двигатель начинает вести себя более спокойно.
Недостатки: сложная конструкция, необходимо следить за состоянием системы вентиляции картерных газов, чистить, менять клапаны.
*Все недостатки на столько не существенны, так как комфорт от вождения повышается на порядок.

И это еще не все схемы вентиляции картерных газов, их конфигурации могут быть как очень простыми, с одним «PCV клапаном», или одним «Редукционным клапаном». Так и замороченными до безумия с центробежными маслоотделителями, насосами вакуума, кучей обратных клапанов, электронным учетом картерных газов. Но задача у них одна и та же. Обеспечить работу малого и большого контура в переходных процессах.
У себя соорудил схему номер 5, переделкой доволен, даже очень. Потихоньку ушло напряжение при езде с кондиционером. Больше нет дерганий, стуков и хрипа от движка. Раньше из-за включения муфты компрессора ощущал себя чайником, перепутавшим 1ую с 3ей. Теперь узнаю о включении муфты от реле, щелк включилось, щелк отключилось. К тому же трубка кондера старого образца, которая шумит, теперь издает шума меньше. Вибрации на руле настолько малы, что нет разницы между режимом "N" и "D". При переключении селектора лишь небольшая вибрация работы гидротрансформатора. Тормоза, как и обещали инженеры VAG, стали лучше, информативней. Если без данной системы, с сотни торможение ощущалось лишь вестибулярным аппаратом и по спидометру. Сейчас, при интенсивном торможении, чувствуешь усилие от педали более равномерно и четко понимаешь как замедляется машина.
Езжу месяц, только комфорт и широкая улыбка. Посмотрим как себя покажет дальнейшая эксплуатация. Если захотите повторить, начните с «PCV клапана» он самый дешевый и простой в установке. Установите его в разрыв малого контура. Работа двигателя будет лучше.
Спасибо за прочтение, надеюсь было информативно и полезно.

Что необходимо купить:
1- эжекционный насос — 10793 VIKA — 546 рублей
2 — редукционный клапан — 1117701500 JP GROUP — 422 рубля
3 — клапан PCV 94580183 GENERAL MOTORS — 328 рублей
4 — патрубок печки восьмерки, идущий от печки к крану — 50 рублей
5 — хомуты, у меня ушло 14 штук — где-то 600 рублей
6 — переходник 16/8 — 35 рублей
7 — тройник 18 мм — 50 рублей
8 — шланг 18 мм — 100 сантиметров -150 рублей
9 — шланг 8 мм — 100 сантиметров — 150 рублей
10 — стандартный патрубок вентиляции
* 8ая и 9ая позиции брал метражом.
Итого около 2400 рублей

Товарищи! Прошу читать внимательней. Если есть вопросы задавайте. Акцент записи идет на минусы связки автомат-кондер-ВАЗ. Если у Вас механика ниже схемы 3 переделка будет избыточна.

Доработка системы вентиляции картерных газов

Не водите машину быстрее, чем летает ваш ангел-хранитель.

  • Город Копейск
  • Авто: Крокодил 2000г
  • Имя: Gray

На сапун ставил топливный фильтр от инжектора.

  • Город Челябинск
  • Авто: Лакированная Нива 21214, полный сток, спереди ненужный кингурятник, но которая способна доехать до БЛ
  • Имя: Вадим

диаметр сапуна и фильтра то разные, или я что то не понимаю

  • Город .
  • Авто: .
  • Имя: .

На сапун ставил топливный фильтр от инжектора.

бумага впитывает масло, разбухает и привет, вентиляция ёк. Я же поставил НЕ бумажный и, практически, вертикально, чтобы масло (при появлении) стекало обратно в картер.

Не водите машину быстрее, чем летает ваш ангел-хранитель.

  • Город Копейск
  • Авто: Крокодил 2000г
  • Имя: Gray

диаметр сапуна и фильтра то разные, или я что то не понимаю

От инжектора, только не тот что на защелках, а тот который на резьбе.

бумага впитывает масло, разбухает и привет, вентиляция ёк. Я же поставил НЕ бумажный и, практически, вертикально, чтобы масло (при появлении) стекало обратно в картер.

Вот я лошара. Об этом то и не подумал. Пойду посмотрю как он себя ведет
Хотя у меня он тоже вертикально стоит

  • Город .
  • Авто: .
  • Имя: .

Юра, как я понял, ты на толстый шланг фильтр вкорячил - там парЫ и так через маслоотсекатель проходят, а масло в ресивере появляется через тонкий шланг, который связан напрямую с картером и основной расход масла тоже через него происходит

Не водите машину быстрее, чем летает ваш ангел-хранитель.

  • Город Копейск
  • Авто: Крокодил 2000г
  • Имя: Gray

Все равно надо проверить. И на тонкий шланг тоже поставить

  • Телефон: 79085758203
  • Город Копейск
  • Авто: Нива Надежда 2120
  • Имя: Витёк

всем здрасте .про сапун-у большинства инжекторных двигателей(импортного пр-ва) стоит поролоновая вставка.в месте где шланг сапуна подходит в в.ф.не проще ли аннологично сделать?дёшего и сердито

  • Город копейск
  • Авто: ваз-2121 1991 г.в
  • Имя: иван

всем привет. может с темой не угадал но задам вопрос сюда. стала плохо работать машина на карбюраторе. решил снять промыть , продуть .открутил шланг который идет от масленого щупа в карб и обнаружил что он внутри почти весь в белой эмульсии густой. разобрал карб и внутри куда этот шланг подходит тоже самое. такая же бяка. вопрос зачем нужен этот шланг ? и что можно сделать ?.

  • Телефон: 89514680888
  • Город Миасское
  • Авто: 21213 небольшой лифт, pccar : 21200 сток
  • Имя: Исаев Евгений Николаевич

можешь просто заглушить его хуже не станет

  • Город Еткульсити
  • Авто: опять китаец 2011г
  • Имя: Андрей

Просто заглушить нельзя,некуда будет деватся картерным газам,100% побегут сальники коленвала.Промыть,почистить всё,может заменить шланги,установить причину появления эмульсии.

  • Телефон: 89514680888
  • Город Миасское
  • Авто: 21213 небольшой лифт, pccar : 21200 сток
  • Имя: Исаев Евгений Николаевич

Просто заглушить нельзя,некуда будет деватся картерным газам,100% побегут сальники коленвала.Промыть,почистить всё,может заменить шланги,установить причину появления эмульсии.

не пугай народ, тот шланг тоненький который идет в карб можно смело глушить, сам также поступил

картерные газы идут в кастрюлю карбюратора по большому шлангу

  • Город .
  • Авто: .
  • Имя: .

а где написано, что у него тонкий шланг в эмульсии?

  • Телефон: 89514680888
  • Город Миасское
  • Авто: 21213 небольшой лифт, pccar : 21200 сток
  • Имя: Исаев Евгений Николаевич

шланг который идет от масленого щупа в карб и обнаружил что он внутри почти весь в белой эмульсии густой. разобрал карб и внутри куда этот шланг подходит тоже самое.

вроде русским языком написано что шланг идет до карба

до него идет тоненький, алга

  • Телефон: 89085803776
  • Город Копейск
  • Авто: 2121
    Daewoo Nexia n150
  • Имя: sergei

Система вентиляции картерных газов двигателей с карбюраторами 2105, 2107 «Озон» и их модификациями состоит из большой и малой ветвей. Через большую и малую ветвь газы удаляются при повышенных нагрузках, через корпус воздушного фильтра и карбюратор, при невысоких нагрузках удаление происходит через малую ветвь, в карбюратор, и далее в задроссельное пространство.

Схема системы вентиляции картера двигателя автомобиля.

pict01121.jpg

система вентиляции картера двигателя автомобилей ВАЗ 2105, 2107

Принцип действия

Под воздействием разрежения, возникающего в корпусе воздушного фильтра при открытых дроссельных заслонках и высоких оборотах коленчатого вала двигателя, картерные газы высасываются из картера двигателя и принудительно подаются через сапун и шланг вентиляции в полость воздушного фильтра после фильтрующего элемента. Это работает большая ветвь системы вентиляции. Через малую ветвь, в этом случае, происходит дополнительное удаление. Золотник, входящий в малую ветвь вентиляции, находящийся на оси дроссельной заслонки первой камеры, внутри корпуса карбюратора, увеличивает проходное отверстие для прохождения картерных газов по мере открытия дроссельной заслонки и вращения ее оси.

При работе двигателя на холостом ходу или с небольшими нагрузками дроссельные заслонки либо закрыты, либо слегка приоткрыты, разрежение в корпусе воздушного фильтра слишком мало и вентиляция через большую ветвь происходит вяло, а под закрытыми дроссельными заслонками разрежение довольно велико. Поэтому вентиляция происходит через малую ветвь вентиляции картера. Золотник перекрывает отверстие отвода газов и они проходят лишь через малое калиброванное отверстие, таким образом предотвращается неустойчивая работа двигателя на холостом ходу из-за черезмерного «подсоса» постороннего воздуха в карбюратор.

pict0062.jpg

схема работы золотникового устройства карбюраторов 2105, 2107 Озон

Проверка

1. Проверить действием большую ветвь системы вентиляции невозможно. Необходимо визуально оценить замасленность двигателя — подтекание масла из-под крышки маслозаливной горловины, прокладки клапанной крышки, шлангов вентиляции картера, сальников коленчатого вала, состояние свечей. Помимо этого снимаем крышку корпуса воздушного фильтра и осматриваем полость корпуса и фильтрующий элемент на предмет замасливания.

Конечно все вышеперечисленное может быть проявлением иных неисправностей (износ поршневых колец, неплотно затянуты соединения, износ сальников, отказ свечей), но для начала, перед поиском других неисправностей, стоит провести ревизию системы вентиляции картера, так как ни чего особо сложного в этом нет, а начинать ремонт лучше с самого простого.

2. Проверяем малую ветвь системы вентиляции. Надеваем трубку на штуцер шланга малой ветви вентиляции и через нее дуем туда ртом. Воздух должен проходить довольно свободно, если не проходит, значит каналы системы засорены и их необходимо чистить.

Пробуем подуть еще раз и одновременно вращаем ось дроссельной заслонки первой камеры за рычаг. По мере поворачивания оси воздух должен проходить все легче и легче, так как пластмассовый золотник, расположенный на оси, все больше приоткрывает отверстие для прохождения воздуха.

Системы вентиляции картера

О существовании, а тем более устройстве этой системы в двигателях автомобилей, знают далеко не все их владельцы. Потому главным образом, что она дает знать о себе обычно после многих лет эксплуатации, когда мотор начинает требовать ремонта. Да и то правда, что в систему она оформилась недавно, когда вместо трубки с перегородкой, через которую газы из картера выходили прямо наружу, стали применять разные устройства, препятствующие загрязнению атмосферы и сберегающие масло. В результате она стала заметно влиять на работу двигателя, а значит, требовать к себе внимания, в чем ей отказывают, чаще всего по незнанию.

Восполнить этот пробел поможет предлагаемый материал, подготовленный инженером Е. Масленниковым.

При работе двигателя часть газов из цилиндров проникает через кольцевые уплотнения поршней в картер. Здесь они повышают давление, вытесняя масло наружу через соединения деталей, уплотняемые прокладками и сальниками, а также отрицательно действуют на свойства масла. Количество этих газов, называемых картерными, зависит от конструктивных особенностей и качества обработки поверхностей, а также от износа деталей цилиндро-поршневой группы, нагрузки на двигатель или, что то же самое, степени открытия дроссельной заслонки карбюратора. Закономерность прорыва картерных газов в зависимости от двух последних факторов представлена на рис. 1.


Рис. 1. Зависимость количества газов, прорывающихся в картер М, кг (%): а) от нагрузки; б) от износа деталей цилиндро-поршневой группы (ЦПГ). Точки: 1 – после обкатки двигателя; 2 – в конце ресурса деталей ЦПГ.

По действующим ныне требованиям к бензиновым двигателям рабочим объемом до 2 литров максимальное количество прорывающихся газов у нового двигателя не должно превышать 2 000 л/ч (точка 1 на рис. 1, б). По мере увеличения зазора в замках поршневых колец эта величина растет и на границе нормального износа деталей цилиндро-поршневой группы может достичь 150% от первоначальной.

Как показывают исследования, картерные газы почти на 3/4 состоят из горючей смеси, поступившей в цилиндры и прорвавшейся в картер в период сжатия и сгорания, и на 1/4 – из отработавших газов. Поэтому они содержат много топлива (углеводороды с общей формулой СН), токсичные продукты сгорания (окись углерода – СО, окислы азота), а также пары воды, двуокись углерода, твердые частицы и некоторые другие компоненты. Причем в картерных газах токсичных веществ в несколько раз больше, чем в выхлопных газах автомобиля.

Многие из этих компонентов активно воздействуют на масло, вызывая его окисление. А пары воды, соединяясь с окислами азота, образуют щелочи и кислоты, которые, попадая на поверхность деталей двигателя, вызывают их коррозию и интенсивный износ. Кроме того, пары воды играют существенную роль в образовании осадков в системе смазки двигателя (более подробно об этом процессе рассказано в статье "Как смажешь – так поедешь").

С целью свести к минимуму влияние картерных газов на качество масла и износ двигателя, а также прекратить вытекание масла под действием повышенного давления в картере создан комплекс устройств, названный системой вентиляции картера. Она призвана обеспечить полное удаление газов, проникающих в картер двигателя, поддерживать в нем давление близкое к атмосферному, чтобы исключить выдавливание масла в случае повышенного давления или подсос в картер загрязненного пылью и влагой воздуха – в случае пониженного; способствовать сохранению физико-химических свойств смазочного масла; предотвращать унос масла с отсасываемыми картерными газами.

Что представляет собой эта система? Рассмотрим ее на примере развития в отечественных двигателях легковых автомобилей.

В 50-х годах применяли открытые приточно-вытяжные системы, как в двигателях "Волги" моделей "21" и "22" и их модификаций. Удаление газов в этой системе идет за счет разрежения, создаваемого потоком воздуха около конца вытяжной трубки во время движения автомобиля, а при работе двигателя на холостом ходу – за счет разницы атмосферного давления и давления в картере.

Недостатки такой системы – плохой отсос газов при работе двигателя на холостом ходу, загрязнение окружающей среды высокотоксичными картерными газами и маслом, выносимым из картера, высокий его расход, а также попадание влаги в картер через систему вентиляции.

Появление моторных масел с более стабильными свойствами, а также законодательное запрещение применять открытые системы привели к созданию закрытой вытяжной системы. Отличается она от предыдущей тем, что вытяжная трубка выведена не в атмосферу, а в зону входа воздуха в инерционно-масляный фильтр системы питания двигателя, а также отсутствием продувки картерного пространства воздухом. В этой системе газы удаляются благодаря эжекции, возникающей при омывании среза патрубка 8 потоком всасываемого двигателем воздуха. Смешиваясь с ним, газы проходят через воздушный фильтр 10, где от них отделяются капельки масла, сконденсировавшиеся пары воды, твердые частицы продуктов сгорания и т. п.

Такая система была применена в двигателях "Москвич-407" и "408", а также в двигателе с воздушным охлаждением для "запорожцев".

Она позволила полностью ликвидировать выброс вредных газов в окружающую среду, а также те отрицательные явления, которые были связаны с продувкой картера воздухом, и несколько снизить количество масла, уносимого из картера двигателя. Кроме того, интенсивность отсоса картерных газов в этой системе растет с увеличением частоты вращения вала двигателя, что в основном совпадает с закономерностью прорыва газов в картер.

Появление в конце 60-х годов сухих воздухоочистителей со сменным бумажным элементом потребовало модернизации вытяжной системы вентиляции. Это объяснялось тем, что картерные газы, насыщенные масляным туманом, проходя через фильтрующий элемент, быстро его загрязняли. Поэтому вытяжная трубка была перенесена в зону между элементом и карбюратором. И, чтобы масло, оседая на стенках воздушных каналов, в жиклерах карбюратора не нарушало его регулировку, в систему были введены высокоэффективные маслоотделители, из которых масло возвращается в картер. Примером может служить система вентиляции картера в двигателе УЗАМ-412 "Москвича-412".


Рис. 2. Вентиляция картера в двигателе "Москвич-412": 1 – фильтрующий элемент; 2 и 4 – патрубки; 3 – шланг отбора газов из картера; 5 – кольцевая полость воздухоочистителя для отбора газов из картера; 6 – карбюратор; 7 – впускной трубопровод.

Однако и она сохранила существенный недостаток, заключающийся в том, что при малых расходах воздуха, соответствующих работе двигателя на холостом ходу или с малыми нагрузками, отсос газов практически прекращается, вызывая некоторый рост давления в картере. Решила эту проблему закрытая комбинированная система. В основу ее была положена предыдущая, а для удаления газов на неблагоприятных режимах введена дополнительная ветвь с выходом в задроссельное пространство. Это потребовало специального устройства, регулирующего интенсивность отсоса, так как при уменьшении нагрузки прорыв газов в картер уменьшается, а интенсивность их отсоса увеличивается с ростом разрежения в задроссельном пространстве. Такую систему можно увидеть в двигателе УЗАМ-412, устанавливаемом на "Москвич-2140", и в двигателях ВАЗ моделей "2101", "21011", "2103", "2105", "2106". Здесь интенсивность отсоса газов регулирует золотник 1, закрепленный на оси дроссельной заслонки в первой камере. При работе двигателя на холостом ходу или с малыми нагрузками картерные газы проходят через калиброванное отверстие 2, а по мере роста нагрузки – через обходной канал, открываемый золотником. В дальнейшем, с увеличением разрежения в зоне между фильтрующим элементом воздухоочистителя и карбюратором основная масса газа отсасывается через основную ветвь.


Рис. 3. Схема вентиляции картера в двигателе ВАЗ-2105: 1 – золотник; 2 – калиброванное отверстие; 3 – впускной коллектор; 4 – дроссельная заслонка; 5 – шланг для отвода газов в задроссельное пространство; 6 – карбюратор; 7 – фильтрующий элемент фильтра; 8 – всасывающий патрубок вентиляции картера; 9 – пламегаситель; 10 – вытяжной шланг; 11 – крышка маслоотделителя; 12 – маслоотделитель; 13 – сливная трубка маслоотделителя.

Масло, отделенное от картерных газов, стекает по сливной трубке 13. Прорыв пламени в картер двигателя при вспышках в карбюраторе исключает пламегаситель, установленный на шланг.


Рис. 4. Схема вентиляции картера в двигателе ВАЗ-2108: 1 – впускной трубопровод; 2 – трубка для отвода картерных газов в задроссельное пространство карбюратора; 3 – карбюратор; 4 – воздушный фильтр; 5 – верхний вытяжной шланг вентиляции картера; 6 – сетка маслоотделителя; 7 – крышка головки блока цилиндров; 8 – корпус маслоотделителя; 9 – нижний вытяжной шланг вентиляции картера; 10 – указатель уровня масла; 11 – штуцер.

Введение золотникового устройства, к сожалению, усложнило систему и снизило ее надежность, поскольку появилась подвижная деталь, а также подняло себестоимость карбюратора. Поэтому позже от него отказались, и у недавно разработанных двигателей ВАЗ-2108 и "2109", а также УЗАМ-331.10 для "Москвича-2141" газы из дополнительной ветви 2 выходят через штуцер карбюратора, имеющий калиброванное отверстие, ограничивающее количество отсасываемых газов. Благодаря этому вентиляция практически не влияет на величину разрежения во впускной трубе на режиме холостого хода. Кроме того, в двигателе ВАЗ-2108 применен новый, более эффективный сетчатый маслоотделитель, который одновременно выполняет роль пламегасителя.

Теперь, ознакомившись с устройством и работой разных систем вентиляции, перейдем к их эксплуатации. На что надо обращать внимание? Поскольку в системе нет подвижных деталей (за исключением систем с золотниковым устройством), а отсос картерных газов идет благодаря разрежению во впускном тракте двигателя, необходимо, вероятно, прежде всего обеспечить герметичность системы. Стало быть, полезно регулярно проверять плотность соединения шлангов со штуцерами, а также крышки маслоотделителя с корпусом (у всех двигателей ВАЗ, за исключением "2108"). Кроме того, в процессе эксплуатации автомобиля из масла выпадают осадки, и на деталях двигателя, в том числе системы вентиляции, появляются отложения. В результате проходные сечения каналов и шлангов уменьшаются, из-за чего падает количество отсасываемых газов вплоть до полного прекращения вентиляции.

Чтобы устранить эту неисправность, систему необходимо периодически разбирать, промывать и счищать с деталей отложения. Особое внимание при этом нужно уделять расположенным в карбюраторе каналам с малыми диаметрами, через которые картерные газы подводятся к золотниковому устройству и отводятся от него в задроссельное пространство. Калиброванное отверстие в золотнике или в штуцере карбюратора при необходимости можно прочищать деревянной палочкой. Для промывки деталей системы вентиляции можно использовать керосин или бензин, а для промывки золотникового устройства, штуцера и каналов карбюратора – ацетон. Периодичность обслуживания системы для каждой модели двигателя своя, указанная в инструкции по эксплуатации автомобиля.

При обслуживании системы вентиляции картера у двигателей ВАЗ, кроме того, требуется промывать пламегаситель, разбирать маслоотделитель и очищать его детали. Для этого у двигателей ВАЗ-2101, "21011", "2103", "2105", "2106" достаточно снять крышку, отвернув гайку. На двигателе ВАЗ-2108 снимают крышку головки блока цилиндров, после чего отворачивают два болта, крепящие к ней корпус маслоотделителя, и демонтируют корпус и сетку. В двигателях УЗАМ-412 ("Москвич-412") маслоотделитель неразборный. Он изготовлен как одно целое с пробкой маслозаливной горловины, и его очистка заключается в промывке керосином или бензином.

Наконец, хочу остановиться на двух дефектах, которые автолюбители часто связывают с работоспособностью системы вентиляции картера.

Владельцы некоторых автомобилей с двигателем УЗАМ-412 жалуются на большое количество масла, попадающего через систему вентиляции в корпус воздушного фильтра, что приводит к быстрому замасливанию фильтрующего элемента, воздушных каналов и жиклеров карбюратора. Причины – в неплотностях соединений. Сначала проверьте, как прилегает корпус маслоотделителя к пластине, прикрепленной к крышке головки блока цилиндров. Для этого снимите крышку и, надавив пальцем через отверстие в пластине на корпус, убедитесь в том, что он хорошо поджат пружиной. Если здесь все в порядке, то причиной, как правило, является повышенный уровень масла в картере. Не успокаивайтесь, если щуп отмечает норму. Проверьте, до конца ли ввернута его направляющая трубка с конической резьбой. Пытаясь ввернуть ее, не прилагайте слишком большого усилия, чтобы не сломать. Если довернуть трубку не удается, не доливайте масло на 3–4 мм до верхней метки на масляном щупе.

У некоторых "запорожцев" после 70–80 тысяч километров пробега появляется течь масла через уплотнения коленчатого вала. Если замена сальников новыми не приносит желаемого результата, автолюбители правильно связывают это с повышением давления в картере. Но причину, вызывающую это повышение, нередко ошибочно видят в ухудшении отсоса картерных газов системой вентиляции. Для улучшения ее работоспособности одни, не мудрствуя лукаво, отсоединяют шланг отсоса картерных газов от корпуса воздушного фильтра, превращая таким образом систему в открытую, а другие начинают заниматься ее усовершенствованием, чтобы увеличить производительность. В самом же деле рост давления в картере двигателя и, как следствие, течь масла через уплотнение коленчатого вала вызвана не ухудшением работоспособности системы вентиляции (если, конечно, она исправна), а чрезмерным износом деталей цилиндро-поршневой группы – компрессионных поршневых колец, цилиндров и поршней.

В заключение еще раз призываю всех автомобилистов содержать в порядке систему вентиляции картера. Выбрасывать в атмосферу неочищенные картерные газы, как это делают (может быть, по незнанию) горе-автолюбители, отсоединяя шланг от воздухоочистителя и опуская его под машину (благо не видно, да и масло недорогое) – значит отравлять воздух и землю. Это сегодня – преступление!

Читайте также: