Резонансный трансформатор н тесла это не секрет

Добавил пользователь Morpheus
Обновлено: 04.10.2024

Трансформатор Николы Тесла

Тесла-трансформатор представляет собой высоковольтный резонансный прибор, работающий на высокой частоте. Конструкция агрегата относительно простая. Подобные приборы демонстрируют разряды электричества, красиво смотрящиеся в темноте. Трансформаторы типа Тесла испускают настоящие молнии. Поэтому его использование сводится к декоративным функциям. Особенности чудо-прибора интересно узнать каждому.

Трансформатор Тесла в работе

История изобретения

Резонансный трансформатор Тесла появился в результате многолетней работы ученого и экспериментатора Н. Тесла. Он стремился найти способ передавать электричество на большие расстояния без проводов. В 1891 году изобретатель продемонстрировал наглядные эксперименты, проводимые в этом направлении.

Практическое применение его трудов (по мнению самого ученого) заключалось в обеспечении светом любого здания, частного дома и прочих объектов посредством тока высокого напряжения и частоты. Ученый раскрывал особенности получения, применения подобных токов, применения их для электроснабжения.

Постепенно ученый начал задумываться об использовании открытого способа для передачи электричества на большие расстояния. На разработку теории исследователь потратил несколько лет. Ученый проводил множество экспериментов, совершал каждый элемент схемы. Экспериментатор трудился над созданием прерывателей, контроллеров цепей, стойких конденсаторов высокого вольтажа. Замысел исследователь в жизнь так и не воплотил в том масштабе, в каком было изначально задумано.

Однако каждый его патент, статья, лекция были сохранены. Их можно сегодня перечитать, обдумать. Например, патент № 649621 и №787412 представлен в интернете. Документы размещены в открытом доступе для широкой общественности. Видео работы агрегата в действии легко отыскать в сети.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Схема и основные компоненты

Чтобы понять, как работает трансформатор Тесла, необходимо рассмотреть его устройство. В схему входит две обмотки – вторичная и первичная. Контуры выполнены из медной проволоки толщиной 0,1-0,2 мм².

К первичной обмотке подводится переменный ток. Это позволяет получить магнитное поле, передающее электричество от первой ко второй катушке. В этот момент вторичная обмотка будет производить контур колебательного типа. Обмотка будет накапливать получаемое электричество. Некоторое время нагрузка будет здесь храниться как определенное напряжение.

Схема резонансного трансформатора Тесла может иметь разное строение катушек. Контуры обладают схожими чертами. Тороидальные разновидности катушек Тесла представлены на фото.

Схема тороидальной катушки Тесла

Трансформатор конструкции Николы Тесла содержит в составе тороид. Элемент выполняет три основные функции:

  1. Способствует накоплению электричества перед тем, как будет получен стример. Большие габариты позволяют тороиду вместить значительное количество энергии. В устройстве часто применяется прерыватель.
  2. Уменьшает резонансную частоту.
  3. Образует электростатическое поле, отталкивающее стример. В некоторых типах конструкций эту функцию выполняет вторичная катушка.

Для подобных устройств важно выдерживать правильное соотношение между диаметром и длиной вторичной катушки. Пропорция должна составлять 1:4. Защитное кольцо схемы препятствует выходу электроники из строя. Деталь выглядит как специальное кольцо, изготовленное из меди.

Для правильной работы трансформатора Тесла защитное кольцо должно заземляться. Стримеры замыкают ток, ударяясь в землю. Если контур надежен, молнии ударяют непосредственно в агрегат.

В первичной обмотке определяется небольшое сопротивление. Это обеспечивает на практике надежную передачу электроэнергии. Точка подключения характеризуется высокой подвижностью. Это позволяет менять резонансную частоту. Понимая соотношение представленных элементов, удастся вникнуть в принцип работы трансформатора Тесла.

Принцип работы

Емкостной трансформатор Тесла характеризуется определенным принципом работы. Он заряжает конденсатор при помощи дросселя. Чем меньше уровень индуктивности, тем быстрее будет происходить зарядка. Спустя некоторое время его показатели напряжения значительно увеличиваются. В разряднике появится дуга. Она станет хорошим проводником.

Емкостным аппаратам требуется обеспечивать заряд аккумулятора от аккумулятора высокого напряжения. Обычные батарейки для этого не подходят. Питание первичной цепи выполняется различными способами. Это может быть статический искровой промежуток с подключением к высоковольтному прибору от микроволнового нагревателя. Также для этих целей применяются схемы из транзисторов на программируемых контроллерах.

Работающий аппарат при сочетании катушки и конденсатора характеризуется хорошим контуром. За счет образовавшейся нагрузки возникают колебания. В этот момент в конденсаторе и катушке произойдет энергообмен. Ее первая часть исчезнет в виде тепловых лучей. Вторая часть электричества проявится в разряднике. Индуктивность будет способствовать образованию еще одного контура. Частота всех компонентов должна быть одинаковой.

Первый контур передает свою нагрузку. Амплитуда колебаний будет равняться нулю. Обменом энергии этот процесс не заканчивается. После исчезновения дуги остаточная энергия может быть заперта. Весь процесс может повторяться. При сильной связи скорость обмена энергией будет высокой.

Некоторые поклонники творческих идей великого изобретателя утверждают, что КПД емкостного трансформатора Тесла составляет более 100%. Однако это не так. Коэффициент полезного действия, которым характеризуется данное устройство, подчиняется законам сохранения энергии. Поэтому такое утверждение не имеет под собой никаких оснований.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

Трансформатор тесла принцип работы


Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка тесла
катушка тесла

Принцип действия трансформатора Тесла похож на работу обычного трансформатора. Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

схема катушки тесла

трансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.


колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали и конструкции трансформатора Тесла

конструкция трансформатора тесла

Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

alt="первичные обмотки трансформатора тесла" width="300" height="71" />
первичные обмотки трансформатора тесла

Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!


Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

трансформатор тесла схема

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3. На транзисторах.

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Пошаговое объяснение процесса сборки и запуска одного из самых мощных трансформаторов Тесла в России. Конструктор: Блотнер Борис

Токи высокой частоты. Резонансный трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты.

По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это утверждение близко к истине, но возможно и то, что именно этот год стал началом дальнейших творческих успехов изобретателя. Дискуссия с инженерами завода Вестингауза не прошла бесследно. Обоснование предложенной им частоты переменного тока в 60 периодов требовало более тщательного анализа экономической эффективности применения как меньших, так и более высоких частот. Научная добросовестность Теслы не позволяла ему оставить этот вопрос без тщательной проверки.

Возвратившись в 1889 году из Европы, он принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду.

Исследования показали, что по мере увеличения частоты переменного тока можно значительно уменьшить объем железа в электромагнитных электродвигателях, а начиная с определенной частоты, можно создавать электромагниты, состоящие из одних только обмоток, вообще без железа в катушках. Двигатели, созданные из таких электромагнитов без железа, были бы чрезвычайно легкими, но во многих других отношениях неэкономичны, и уменьшение затрат металла не окупалось бы из-за значительного увеличения потребления электроэнергии.

Исследуя широкий диапазон частот переменного тока первоначально в пределах, которые могли бы быть применены в многофазной системе (25-200 периодов в секунду), Тесла вскоре перешел к изучению свойств и возможностей практического использования токов повышенных (10-20 тысяч периодов в секунду) и высоких (20-100 тысяч периодов в секунду) частот. Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Хорошо знакомый с мировой литературой по электрофизике и электротехнике, Тесла изучил работу знаменитого американского физика Джозефа Генри, высказавшего еще в 1842 году предположение, что при некоторых электрических разрядах (в том числе и разряде лейденской банки) имеются не только "главные разряды", но и встречные, причем каждый последующий несколько слабее предыдущего. Так было впервые замечено существование затухающего двухстороннего электрического разряда.

Тесла знал и о том, что спустя одиннадцать лет после Генри английский физик лорд Кельвин экспериментально доказал, что электрический разряд конденсатора есть процесс двухсторонний, продолжающийся до тех пор, пока энергия его не будет израсходована на преодоление сопротивления среды. Частота этого двухстороннего процесса достигает 100 миллионов колебаний в секунду. Искра между шариками разрядника, кажущаяся однородной, в действительности состоит из нескольких миллионов искр, проходящих в короткий промежуток времени в обе стороны.

Кельвин дал математическое выражение процесса двухстороннего разряда конденсатора. Позднее Феддерсон, Шиллер, Кирхгоф, Гельмгольц и другие исследователи не только проверили правильность этого математического выражения, но и значительно дополнили теорию электрического разряда. Знаком был Тесла и с работами Антона Обербанка, наблюдавшего явление электрического резонанса, то есть процесс резкого возрастания амплитуды (размаха) колебаний при приближении частоты внешнего колебания к частоте собственные внутренних колебаний системы.

Хорошо известны были ему и опыты Герца и Лоджа, занимавшихся изучением электромагнитных волн. Особенно большое впечатление на Теслу произвели эксперименты Генриха Герца, подтвердившие теоретические предположения Джемса К. Максвелла о волновой природе электромагнитных явлений. Надо заметить, что в работах Герца Тесла впервые нашел указание на явление так называемых "стоячих электромагнитных волн", то есть волн, накладывающихся одна на другую так, что они в одних местах усиливают друг друга, создавая "пучности", а в других уменьшают до нуля, создавая "узлы".

Зная все это, Никола Тесла в 1891 году закончил конструирование прибора, сыгравшего исключительную роль в дальнейшем развитии самых различных отраслей электротехники и особенно радиотехники. Для создания токов высокой частоты и высокого напряжения он решил воспользоваться известным свойством резонанса, то есть явлением резкого возрастания амплитуды собственных колебаний какой-либо системы (механической или электрической) при наложении на них внешних колебаний с той же частотой. На основании этого известного явления Тесла создал свой резонансный трансформатор.

Действие резонансного трансформатора основано на настройке в резонанс его первичного и вторичного контуров. Первичный контур, содержащий как конденсатор, так и индукционную катушку, позволяет получить переменные токи весьма высокого напряжения с частотами в несколько миллионов периодов в секунду. Искра между шариками разрядника вызывает быстрые изменения магнитного поля вокруг первичной катушки вибратора. Эти изменения магнитного поля вызывают возникновение соответствующего высокого напряжения в обмотке вторичной катушки, состоящей из большого числа витков тонкой проволоки, причем частота переменного тока в ней соответственно количеству искровых разрядов достигает нескольких миллионов перемен в секунду.

Наибольшей величины частота достигает в момент, когда периоды первичной и вторичной цепи совпадают, то есть когда наблюдается явление резонанса в этих цепях.

Тесла разработал очень простые методы автоматической зарядки конденсатора от источника тока низкого напряжения и разрядки его через трансформатор с воздушным сердечником. Теоретические расчеты изобретателя показали, что даже при самых незначительных величинах емкости и индукции в созданном им резонансном трансформаторе при соответствующей настройке можно получить путем резонанса весьма высокие напряжения и частоты.

Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники, а мысли Теслы об огромной роли конденсатора и вообще емкости и самоиндукции в развитии электротехники оправдались.

При создании резонансного трансформатора пришлось решить еще одну практическую задачу: найти изоляцию для катушек сверхвысокого напряжения. Тесла занялся вопросами теории пробоя изоляции и на основании этой теории нашел лучший способ изолировать витки катушек - погружать их в парафиновое, льняное или минеральное масло, называемое теперь трансформаторным. Позднее Тесла еще раз возвратился к разработке вопросов электрической изоляции и сделал весьма важные выводы из своей теории.

Едва начав опыты с токами высокой частоты, Никола Тесла ясно представил себе огромные перспективы, открывавшиеся перед человечеством при широком использовании токов высокой частоты. Направление работ Теслы свидетельствует о необычайно разносторонних выводах, которые он сделал из своего открытия.

Прежде всего, он пришел к убеждению, что электромагнитные волны играют исключительно важную роль в большинстве явлений природы. Взаимодействуя друг с другом, они либо усиливаются, либо ослабляются, либо вызывают новые явления, происхождение которых мы иногда приписываем совершенно другим причинам. Но не только электромагнитные излучения играют огромную роль в самых различных явлениях природы. Тесла интуицией большого ученого понял значение различных излучений еще до замечательных открытий радиоактивных элементов. Когда позднее, в 1896 году, Анри Беккерель, а затем Пьер и Мария Кюри открыли это явление, Тесла нашел в этом подтверждение своих предвидений, высказанных им еще в 1890 году.

Огромное значение переменных токов в развитии промышленности, получившей, наконец, необходимый ей электродвигатель, стало ясно Николе Тесле при первом же знакомстве с преимуществами трехфазного тока, требующего для его передачи всего лишь три провода. Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов, с помощью электромагнитных волн. Эта проблема привлекла внимание Теслы, стала предметом его занятий еще в конце 1889 года.

Однако практическое применение токов высокой частоты для самых разнообразных целей требовало изучения на первый взгляд самых различных, не связанных между собой вопросов. Эти-то эксперименты в широком масштабе и начал проводить в своей лаборатории Никола Тесла.

Начав систематические опыты с токами высокой частоты и высокого напряжения, Тесла должен был прежде всего разработать меры защиты от опасности поражения электрическим током. Эта частная, вспомогательная, но весьма важная задача привела его к открытиям, заложившим основу электротерапии - обширной области современной медицины.

Ход мыслей Николы Теслы был чрезвычайно оригинален. Известно, рассуждал он, что постоянный ток низкого напряжения (до 36 вольт) не оказывает вредных действий на человека. По мере повышения напряжения возможность поражения быстро возрастает.

С увеличением напряжения, поскольку сопротивление тела человека практически неизменно, сила тока так же увеличивается и достигает при 120 вольтах угрожающей величины. Более высокое напряжение становится опасным для здоровья и жизни людей.

Иное дело ток переменный. Для него предел опасного напряжения значительно выше, чем для постоянного, и этот предел отодвигается с повышением частоты. Известно, что электромагнитные волны очень высокой частоты не оказывают никакого болезненного действия на человека 10 . Пример тому свет, воспринимаемый при нормальной яркости здоровым глазом без всяких болезненных ощущений. В пределах каких же частот и напряжений переменный ток опасен? Где начинается зона безопасного тока?

Шаг за шагом исследовал Тесла действие переменного электрического тока на человека при разных частотах и напряжениях. Опыты он проводил на самом себе. Сначала через пальцы одной руки, затем через обе руки, наконец, через все тело пропускал он токи высокого напряжения и высокой частоты. Исследования показали, что действие электрического тока на человеческий организм складывается из двух составляющих: воздействия тока на ткани и клетки нагревом и непосредственного воздействия тока на нервные клетки.

Оказалось, что нагревание далеко не всегда вызывает разрушительные и болезненные последствия, а воздействие тока на нервные клетки прекращается при частоте свыше 700 периодов, аналогично тому, как слух человека не реагирует на колебания свыше 2 тысяч в секунду, а глаз - на колебания за пределами видимых цветов спектра.

Так была установлена безопасность токов высоких частот даже при высоких напряжениях. Более того, тепловые действия этих токов могли быть использованы в медицине, и это открытие Николы Теслы нашло широкое применение; диатермия, лечение УВЧ и другие методы электротерапии есть прямое следствие его исследований. Тесла сам разработал ряд электротермических аппаратов и приборов для медицины, получивших большое распространение как в США, так и в Европе. Его открытие было затем развито другими выдающимися электриками и врачами.

Однажды, занимаясь опытами с токами высокой частоты и доведя напряжение их до 2 миллионов вольт, Тесла случайно приблизил к аппаратуре медный диск, окрашенный черной краской. В то же мгновение густое черное облако окутало диск и тотчас поднялось вверх, а сам диск заблестел, словно чья-то невидимая рука соскоблила всю краску и отполировала его.

Удивленный Тесла повторил опыт, и снова краска исчезла, а диск сиял, поддразнивая ученого. Повторив десятки раз опыты с разными металлами, Тесла понял, что он открыл способ их очистки токами высокой частоты.

"Любопытно, - подумал он, - а не подействуют ли эти токи и на кожу человека, не удастся ли с их помощью снимать с нее различные, трудно поддающиеся удалению краски".

В лаборатории Тесла пропускал через свое тело токи напряжением в 1 миллион вольт при частоте 100 тысяч периодов в секунду (ток достигал при этом величины в 0,8 ампера). Но, оперируя с токами высокой частоты и высокого напряжения, Тесла был очень осторожен и требовал от своих помощников соблюдения всех им самим выработанных правил безопасности. Так, при работе с напряжением в 110- 50 тысяч вольт при частоте в 60-200 периодов он приучил их работать одной рукой, чтобы предотвратить возможность протекания тока через сердце. Многие другие правила, впервые установленные Теслой, прочно вошли в современную технику безопасности при работе с высоким напряжением.

Создав разнообразную аппаратуру для производства опытов, Тесла в своей лаборатории начал исследование огромного круга вопросов, относящихся к совершенно новой области науки, в которой его больше всего интересовали возможности практического использования токов высокой частоты и высокого напряжения. Работы его охватывали все многообразие явлений, начиная от вопросов генерирования (создания) токов высокой частоты и кончая детальным изучением различных возможностей их практического использования. С каждым новым открытием возникали все новые и новые проблемы.

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн? Эта задача и стала предметом исследований в лаборатории Теслы в начале 1890 года.

Вскоре он накопил огромное количество фактов, позволивших перейти к обобщениям. Однако осторожность Теслы заставила его проверять десятки и сотни раз каждое свое утверждение. Он повторял сотни раз каждый опыт, прежде чем делал из него какие-либо выводы. Необычайность всех открытий Николы Теслы и огромный авторитет его привлекли внимание руководителей Американского института электроинженеров, вновь, как и три года назад, пригласивших Теслу прочесть лекцию о своих работах. Тесла избрал тему: "Опыты с переменными токами весьма высокой частоты и их использование для искусственного освещения".

По традиции, установившейся с первых лет существования института, было разослано ограниченное число приглашений лишь самым выдающимся электротехникам. Перед такой избранной аудиторией 20 мая 1892 года Тесла и прочел одну из своих самых вдохновенных лекций и продемонстрировал опыты, уже осуществленные им в своей лаборатории.

- Нет ничего, что в большей степени могло бы привлечь внимание человека и заслужило бы быть предметом изучения, чем природа. Понять ее огромный механизм, открыть ее созидательные силы и познать законы, управляющие ею, - величайшая цель человеческого разума, - этими словами начал Тесла свое выступление.

И вот он уже демонстрирует перед слушателями результаты своих исследований в новой, еще никем не изученной области токов высокой частоты.

- Рассеяние электромагнитной энергии в пространстве, окружающем источник токов высокой частоты, позволяет использовать эту энергию для самых различных целей, - убежденно говорит ученый и тут же показывает замечательный опыт. Он выдвигает гениальное положение о возможности передачи электроэнергии без проводов и в доказательство заставляет как обычные лампы накаливания, так и специально им созданные лампы без нитей внутри светиться, внося их в переменное электромагнитное поле высокой частоты. - Освещение лампами подобного рода, - говорит Тесла, - где свет возникает не под действием нагрева нитей протекающим током, а вследствие особых колебаний молекул и атомов газа, будет проще, чем освещение современными лампами накаливания. Освещение будущего, - подчеркивал ученый, - это освещение токами высокой частоты.

Особенно подробно остановился Тесла на описании своего резонансного трансформатора как источника волн весьма высокой частоты и снова подчеркнул значение разряда конденсатора в создании таких колебаний. Тесла правильно оценил большое будущее этой важнейшей детали современных радиотехнических средств. Он выразил эту мысль следующими словами:

- Я думаю, что разряд конденсатора будет в будущем играть важную роль, так как он не только предоставит возможность получать свет более простым способом в том смысле, какой указывает изложенная мною теория, но окажется важным и во многих других отношениях.

Подробно изложив результаты экспериментов с токами высокой частоты, получаемыми с помощью резонансного трансформатора, Тесла завершил лекцию словами, свидетельствующими о его ясном представлении значения дальнейшего изучения явлений, над которыми его работы едва приоткрыли завесу тайны:

- Мы проходим с непостижимой скоростью через бесконечное пространство; все окружающее нас находится в движении, и энергия есть повсюду. Должен найтись более прямой способ утилизировать эту энергию, чем известные в настоящее время. И когда свет получится из окружающей нас среды и когда таким же образом без усилий будут получаться все формы энергии из своего неисчерпаемого источника, человечество пойдет вперед гигантскими шагами.

Одно созерцание этой великолепной перспективы подымает наш дух, укрепляет нашу надежду и наполняет наши сердца величайшей радостью.

Под бурные аплодисменты Тесла закончил свое замечательное выступление. Необычайность всего показанного и особенно смелые выводы ученого, видевшего революционные последствия своих открытий, поразили слушателей, хотя далеко не все поняли содержание лекции так глубоко, как того хотелось бы Николе Тесле.

Трансформатор Теслы


Содержание

Описание конструкции

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Функционирование

Заряд

Генерация

После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения.

Модификации

Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.

Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как IGBT транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.

Использование трансформатора Теслы



Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи якобы не причиняли вреда внутренним органам (см.: скин-эффект), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния. Так же он использовался как орудие пыток. Мощные разряды высокой частоты почти всегда приводили к смерти.

Похожая на этот трансформатор схема используется в системах зажигания двигателей внутреннего сгорания, но там она низкочастотная.

В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Эффекты, наблюдаемые при работе трансформатора Теслы

Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.

Неизвестные эффекты трансформатора Теслы

Трансформатор Теслы в культуре

В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию.

Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.

В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.

В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.

В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum

В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.

В игре "Вивисектор" присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.

Сравнительные особенности

Напряжение на выходе данного трансформатора является переменным, а ток чрезвычайно мал. Это приводит к тому, что, несмотря на потенциал в миллионы вольт, прикосновение и разряд в тело человека может быть безопасным. В противоположность этому, другие высоковольтные генераторы, например, преобразователь для люстры Чижевского, высоковольтный умножитель телевизора, и иные бытовые ВВ генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение — "всего" порядка 25 кВ — являются смертельно опасными. Их выходные выпрямительные ёмкости могут дать при прикосновении импульс тока величины, несовместимой с жизнью. В люстре Чижевского должны быть предусмотрены токоограничительные резисторы. Но в телевизоре их установить невозможно.

Резонансный трансформатор н тесла это не секрет

Суть:
Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных, резонансных колебаний, то при усилиях равных с принудительными колебаниями, максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы - в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия - генератор. Их согласованность ("подталкивание" строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).

Описание простейшей конструкции:
Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Разрядник, в простейшем случае обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.

Использование трансформатора Тесла:
Выходное напряжение трансформатора Тесла может достигать нескольких миллионов вольт. Это напряжение в частоте минимальной электрической прочности воздуха способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Тесла используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине.[3][4] Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняли вреда внутренним органам (см.: скин-эффект, Дарсонвализация), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Неверно считать, что трансформатор Тесла не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Также, он изготавливается многими любителями высоковольтной техники ради сопровождающих её работу эффектов.

Данный генератор свободной энергии построен на основе катушки Тесла. Запускаясь от аккумулятора, генератор продолжает работу в автономном режиме якобы используя энергию эфира.

Весь космос потенциальное поле, говорит Тариэл Капанадзе, я нашёл ключ, чем могу получить энергию, энергия есть и здесь возле нас в пространстве, просто надо его открыть, и что бы эту энергию взять, нужен импульс. Недавно 9 вольтовой батарейкой дал питание, и через некоторое время устройство начало работать, после этого оно само себе даёт питание, в рабочем режиме я смог добиться до 150 киловатт энергии, но можно этот процесс усложнить, и взять больше энергии!

- Эта коробка?
- Да. Здесь производится концентрация энергии, которую я получаю из пространства.

- Можно сказать, эту энергию получаем из воздуха?
- Это эфиродинамический процесс. В своё время Эйнштейн опровергал существование эфира, позднее учёные были вынуждены удостовериться в его существовании в пространстве, и в физике появилось новое направление - эфиродинамика. Процесс получения энергии из пространства, одно из главных в эфиродинамике.

- Значит пространство, искра и секретный метод, и можно получить альтернативную энергию. Да?
- В большой точности я ничего сказать не могу, это коммерческая тайна, да и уже много противостояний у меня, украсть идею пытались уже.

- Кто заинтересовался этим?
- Здесь (в Грузии) я никого не смог заинтересовать и пошел в Турцию, и там запатентовал свой генератор, потом с турками я подписал контракт, должны были сделать 10 мегаваттную электростанцию, начал работу, а в это время показался некто Миндели, говорит, я тоже знаю об этом секрете. Много денег и нервов ушло на борьбу с ним. Я вернулся в Грузию, А Миндели сидит в Турции и думает как из пространства получить энергию. Турки снова начали контактировать со мной, но я уже не хочу смотреть туда.

- Кроме турков никто больше не заинтересовался вашим изобретением?
- Да конечно, недавно заинтересовались европейские и западные специалисты, недавно я сделал транспортную версию моего аппарата, была презентация, которая прошла на патриаршем телевидении, на ней были 3-4 эксперта из Европы, которые удостоверились, что аппарат настоящий. У Патриарха всея Грузии есть желание, что бы это изобретение осталось в Грузии, я тоже хотел, что бы Грузия получила хорошую прибыль, но со стороны правительства внимания ноль.

- Если ваше изобретение будет внедрено, каковы будут последствия?
- В первую очередь функцию потеряет "телас" (энергоком): главный принцип такой - берёшь столько энергии сколько захочешь, каждый человек сможет это устройство установить в квартиру или в подъезде. Единственное что нужно, это электропроводка и качественные детали.

- Господин Тариэл, а по профессии Вы физик?
- Физику я только в школе учил. По профессии я архитектор, на эту дорогу меня Господь привел, когда спрашивают, как родилась идея, я отвечаю, что это не моя, а Николы Теслы, был такой сербский ученый, который в Америке жил и работал.

- Что скажите о планах на будушее?
- Недавно сотруднику компании "VESTEL" сказал, дайте по одному экземпляру техники: стиральную машину, холодильник, кондиционер и другие, и в ближайшее время верну такими, что штепсель не понадобится. Могу на подобной технике установить внутри собственное энергопитание, которое заставит работать его и работать. Так что будущие планы не от меня зависят. Через несколько дней собираюсь с Патриархом встретиться, мое желание - идея здесь остаться, но из-за границы тоже есть предложения, если здесь никто так и не заинтересуется, пойду сотрудничать с автомобильным, морским, железнодорожным воздушным транспортом, хочу лабораторию создать, сегодня век знаний и информации, если может кто победить, то это ум, а ум нам Бог дал, посмотрим что будет в будущем.

Читайте также: