Для чего нужен маслоотделитель в двигателе фольксваген

Обновлено: 16.05.2024

Маслоотделитель — это такая штука, которая, как ни парадоксально, отделяет масло от картерных газов, направляемых во впуск. При засорении эффект очистки падает, а результат проявляется в виде повышенного угара масла, в более запущенных случаях — нестабильной работы двигателя (особенно, на малых оборотах). Конструктивно, фишка сего девайса на многих современных моторах — в тонкой резиновой мембране. Но если вы забьете в Яндекс тупо "мембрана маслоотделителя" — разумеется, в ответку вы получите мировой опыт замены сего чуда исключительно на двигателях от горячо нами любимого VAG. Ибо, "немецкое качество"® .

Видеоверсия событий:

Задача: Диагностика состояния маслоотделителя и профилактика его загрязнения.

1) Выдергиваем третью и четвертую катушки. Сидят хорошо, но ничем не закреплены.
Пломбируем от грязи колодцы (например, малярным скотчем).

2) Откручиваем 10 торкс-болтов на "30" — маслоотделитель теперь держится только двумя шлангами вентиляции. Дальний (если от бампера) просто выдергивается, ближний отсоединяется путем нажатия на ребристые части замка одновременно сверху и снизу.
Все вокруг продуваем от пыли и грязи, после этого снимаем отделитель. Не переворачиваем и не трясем над посадочным местом, чтобы не замусоривать клапанную крышку! Я перевернул и замусорил, разумеется. Потом ковырялся с салфетками.
Сняли — и сразу же залепили "дыру" в моторе тем же малярным скотчем, или хотя бы салфетками.

3) Снизу ничего интересного не увидите — для чистки нужно снять крышку "кастрюли", под которой и кроется заветная резинка. В этом основная засада — защелки сделаны на совесть, отковыривать их (тонкой плоской отверткой подлезая под кромку крышки) я настоятельно рекомендую на горячем двигателе — значительно проще. Можно даже сначала снять крышку на установленном на двиг маслоотделителе, а потом его извлечь. Дело вкуса.

4) Тщательно прочищаем саму "кастрюлю" от крепко въевшегося нагара, который покрывает ее по всей поверхности. До идеала чистить можно полдня, но, как минимум, соскоблите его (я использовал тонкое шило) с канавок, по которым стекает масло. Особенно обратите внимание на маленькое отверстие маслостока от основного канала. Всё пометил на фото.

Разумеется, все отверстия маслоотделителя после этого нужно промыть и продуть во все стороны. Тщательно удалите остатки воды.

5) Состояние моей мембраны было весьма плачевное. Все тот же трудносчищаемый нагар — это еще ладно. Но, как выяснилось уже потом, сама резина (или силикон — не берусь утверждать, что это) от температурных и химических воздействий растрескалась по всей рабочей поверности, чего я сразу не заметил. Где-то с полчаса нежно мыл и тер пальцами, сантиметр за сантиметром отвоевывая у нагара мембранку. Отмыл, все собрал обратно. Довольный собой поехал кататься. И…

Еду, значит, никого не трогаю. Километров на 30-40 уж как отъехал. :)
И тут — свиииииИИИИИСТ! Возник внезапно, а по резкости сравним буквально с тренерским свистком, в который кто-то нехило дует прямо под капотом. На видео присутствует, кому интересно. Признаться, сначала даже подумал, что заклинило какой-то из роликов — казалось, что звук идет со стороны навесных. Но нет. Мои волшебные руки все сделали правильно — в мембране дыра. :)
Ну че — выдернул ее, да поехал дальше. Холостые плавают, отклик на педаль до 2000 не совсем адекватен, коробас нервничает. Но жить можно.

На следующий день поехал в Москву за неоригинальной мембраной (артикула нет, но ищется Яндексом элементарно). К слову, в ней уже учтен косяк ВАГовцев — внешний буртик сделан без ослабляющей его фаски, сплошным (см. видео). К слову, именно по этому месту и "поехала" изначально моя старая мембрана.

6) Ахтунг! Новая мембрана встает в крышку плотнее старой, поэтому, обязательно проследите, чтобы ее кромка плотно вошла в паз крышки по всему периметру! Перед установкой в маслоотделитель, нелишним также будет ее смазать тонким слоем свежего масла (но только с внутренней, "рабочей" стороны, где идет контакт с газами!).
Крышка защелкивается туго — убедитесь, что вы ставите ее ровно по "зубам" защелок. После установки еще раз проверьте, все ли защелки наделись на свои "зубы".

7) Затяжка корпуса маслоотделителя должна проходить по установленному алгоритму, с усилием в 11 Н/м . См картинку ниже.

а) Де-факто, мембрану добил-таки я, спору нет. Не выдержала мойки с химией и очистки (хоть и очень нежной, пальцами) от нагара.
б) Мембрану я именно добил . На фото и видео прекрасно видно ее состояние. Скажем так — своими действиями я приблизил неизбежное ближайшего будущего. Куда хуже, случись то же самое где-то вдали от дома — мне бы и в голову не пришло, что есть какая-то резинка в маслоотделителе, которая может издавать такой мозгораздирающий свист…
Да и нагар на канавках маслостоков был уже ощутимый — все почистил. Так что, будем считать — все случилось, в итоге, во-благо. :)


Мембрана 0311803A немножко толще оригинала, из-за армированного основания. Крышка маслоотделителя 0311803A закрывается очень плотно, с небольшим усилием, за счет этого создается разряжение.



Крышка маслоотделителя системы вентиляции картера в сборе


Прокладка маслоотделителя (M8X56) -

VAG 06H 103 484 A

Уплотнительные резиновые кольца для соединительных патрубков:

  • VAG N 906 424 01 – 2 шт, размер 14х2,5 мм для патрубка к впускному коллектору;
  • VAG N 908 063 02 – 1 шт, размер 28х3,5 мм для патрубка на вход турбонагнетателя.

Размеры мембраны маслоотделителя


Разборка крышки маслоотделителя системы вентиляции картера


Разборка

На крышке имеется 6 защелок.

Для демонтажа можно воспользоваться двумя шлицывыми отвертками или зубочистками.

С помощью зубочисток аккуратно отжимаем защелки и фиксируем их открытыми.

Достаточно снять 4 защелки, на последней надо бы крышку придерживать рукой/молотком, т.к. крышка под воздействием пружины "выстрельнет"

Маслоотделитель (МО) - создает нужное разряжение в двигателе и отфильтровывает картерные газы от масла.

маслоотделитель.jpg

Признаки неисправного МО:

- Неправильное разряжения (измерить можно манометром, присоединенным к трубке щупа уровня масла)

efe6091s-960.jpg

- много масла на выходных патрубках МО

- в следствии неправильного разряжение запотевание самого МО, запотевания по прокладкам двигателя, потекший сальник коленвала.

Какие бывают и какой все таки заказывать:

06H103495 А - 06H103495 E - 06H103495 AC - 06H103495 AH (Тiguan 2008-2009 годов)

06H 103 495 H - 06H 103 495 AD - 06H 103 495 AJ (Tiguan c 2010 года)

Согласно информации с интернета разряжение в последних версиях одинаковое 25 мбар разница только в том что в AJ есть доп. клапан. потому можно брать последнюю версию 06H 103 495 AJ

b9e6091s-960.jpg

Момент и порядок затяжки болтов МО

  • Denis_ka и Shikombo это понравилось

/// Машинка на drive2 \\\ Киев - Чип-тюнинг, отключение EGR\DPF, Вася диагност, VAS5054 (Обновления ПО, активация функций и т.д.) писать в ЛС.

Солнце, воздух и вода не помогут никогда! Только секс и пофигизм укрепляют организм.

  • Откуда Долгопрудный, Набережный
  • Авто: Tiguan S&S 2.0 TSi AT

на большом форуме тема - ахххонь

я большую пачку сушек умял пока читал

коллектор то мне почистили, а вот про клапана не уверен

  • Откуда вмкадыш
  • Авто: VW Caravelle
  • Откуда Украина, Киев
  • Авто: Білий Тигр S&S 2.0 TSI 7-DSG, Сірий Вовк S&S 2.0 TDI

измерить можно манометром. после 100тыс. думаю обязательно уже менять. и если есть запотевание я бы тоже задумался над заменой

/// Машинка на drive2 \\\ Киев - Чип-тюнинг, отключение EGR\DPF, Вася диагност, VAS5054 (Обновления ПО, активация функций и т.д.) писать в ЛС.

Солнце, воздух и вода не помогут никогда! Только секс и пофигизм укрепляют организм.

  • Откуда Долгопрудный, Набережный
  • Авто: Tiguan S&S 2.0 TSi AT

тока мне после замены турбины приговорили сам блок вентиляции картера. онаночио

Система внтиляции картерных газов

Двигатель внутреннего сгорания работает по принципу сжигания топливно-воздушной смеси в цилиндрах. После сжигания топливного заряда отработавшие газы и другие продукты сгорания смеси воздуха и топлива в большей части выводятся через выпускную систему наружу, то есть выбрасываются в атмосферу.

Однако с учетом того, что в камере сгорания создается высокое давление, часть газов, остатки несгоревшего топлива и другие продукты прорываются через поршневые кольца и попадают в картер ДВС. Картер представляет из себя закрытую полость, в которой находится коленвал и другие детали силового агрегата.

Чтобы уменьшить количество газов и снизить давление, в конструкции современных ДВС используется система вентиляции картерных газов PCV (Positive Crankcase Ventilation). В этой статье мы поговорим об эволюции и устройстве данной системы, а также затронем вопрос распространенных неисправностей.

Устройство и конструктивные особенности системы вентиляции картера

Система вентиляции картера устройство

Итак, система вентиляции картера позволяет удалить избыток картерных газов, повышает срок службы моторного масла, снижает выброс токсичных веществ в атмосферу, уменьшает давление в картере силового агрегата. Системы могут быть:

  • открытого типа;
  • закрытого типа;

Сразу отметим, на разных типах ДВС конструкция данной системы может отличаться, при этом основные функциональные элементы на современных моторах представляют собой:

  • воздушные патрубки, по которым циркулируют газы;
  • клапан вентиляции картера, который регулирует давление картерных газов при их подаче во впускной коллектор;
  • маслоотделитель для предотвращения попадания масляных паров в камеру сгорания для уменьшения сажеобразования;

Другими словами, сегодня активно используется закрытый тип. Общий принцип работы такой системы вентиляции картера основан на разрежении, которое создается во впускном коллекторе. Благодаря разрежению газы выводятся из картера. Далее указанные газы проходят через маслоотделитель, который отделяет газы от масла. После очистки газы идут по воздушным патрубкам, после чего попадают во впуск. Из впускного коллектора картерные газы, перемешанные с воздухом, подаются в камеру сгорания и дожигаются.

Добавим, что в устаревшей открытой системе (эжекционного типа) избыток картерных газов попросту выбрасывается в атмосферу. Способ очень простой и дешевый, однако отмечается усиленное загрязнение окружающей среды. Также эффективность работы такого решения не самая высокая, так как при низких оборотах и в режиме ХХ подобная вентиляция не работает.

Еще такая система не выполняет своих функций на высоких оборотах. Параллельно существует риск того, что в картер будет засасываться недостаточно очищенный наружный воздух после остывания ДВС. Дополнительно следует выделить, что при наличии открытой системы на моторе возможно увеличение расхода масла, также смазка может выбрасываться вместе с газами наружу, в результате поверхности двигателя загрязняются масляными пятнами.

Двигатель с такой системой работает стабильно, лучше держит обороты зимой, так как холодный наружный воздух во впуске подогревается картерными газами, снижается риск детонации. Однако при всех плюсах и эта схема устройства не лишена ряда недостатков.

В результате попадания картерных газов во впуск происходит усиленное загрязнение воздуховодов и элементов во впускной системе двигателя. Также специалисты отмечают, что принудительная система отсоса отработанных газов может являться причиной быстрого окисления моторного масла из-за сильного разрежения на высоких оборотах.

Также принудительная вентиляция может дополнительно реализовываться разными путями. При этом основным принципом остается то, что газы должны «вытягиваться» из картера, а также происходит их смешивание в результате подачи в картер наружного воздуха. После этого через специальный клапан смесь подается в цилиндры мотора.

На карбюраторных моторах, агрегатах с моновпрыском и инжекторных двигателях можно встретить различные типы реализации подвода картерных газов. Ранее достаточно часто встречалась конструкция, когда система имела два канала. Один был выведен перед дроссельной заслонкой, а второй канал с жиклером выводился за дросселем.

В режиме холостого хода газы подавались по каналу с жиклером за заслонкой. Однако после начала открытия заслонки и роста оборотов коленвала разряжение в области за заслонкой становилось меньше. При этом объем газов, которые прорывались в картер, становился больше. Канал с жиклером переставал выполнять свою функцию, но подключался вывод газов по каналу перед дросселем. Дальнейшее развитие системы вентиляции привело к появлению клапанных решений для регулирования подачи газов.

Если просто, клапан стоит в трубопроводе, через который подводятся газы из картера. Клапаны также делятся на золотниковые и мембранные. Добавим, что мембранные клапаны лучше дозируют количество газов, однако сама мембрана чаще выходит из строя.

Для чего нужен маслоотделитель в двигателе

маслоотделитель двигателя

Как уже было сказано выше, маслоотделитель (маслоуловитель) является элементом системы вентиляции картера. Главной задачей маслоотделителя становится не допустить попадания частичек масла в камеру сгорания.

По способу отделения масла от картерных газов можно выделить лабиринтный и циклический маслоуловитель. Отметим, что на современных моторах используется маслоотделитель комбинированного типа.

Центробежный маслоотделитель более тщательно отделяет смазку от газов. При прохождении через устройство газы фактически «раскручиваются», то есть на них воздействует центробежная сила. Под ее воздействием масло оседает на стенках и стекает в картер ДВС.

Чтобы избежать турбулентности газов, в комбинированном типе устройств за центробежным маслоотделителем на выходе устанавливается лабиринтный успокоитель. В успокоителе завершается процесс отделения частиц смазки от газов из картера.

Клапан системы вентиляции картера

Клапан системы вентиляции картера

Указанный клапан служит для того, чтобы отрегулировать давление газов, которые подаются во впуск. Если разрежение не сильно большое, тогда клапан находится в открытом положении.

В случае, когда разрежение во впускном канале значительное, происходит закрытие данного клапана. Еще отметим, что в турбомотрах вентиляция картера реализована посредством дроссельного регулирования.

Клапан EGR
Рекомендуем также прочитать статью о том, что такое система EGR. Из этой статьи вы узнаете о назначении, устройстве и других особенностях системы рециркуляции отработавших газов.

Частые неисправности системы вентиляции картера

С учетом приведенной выше информации становится понятно, что система вентиляции картера на современных двигателях является достаточно сложной. Выход из строя и нарушения в работе данной системы могут привести к ухудшению общей работоспособности ДВС, возникновению неполадок и уменьшению ресурса агрегата.

Сразу отметим, что проблемы с вентиляцией картера могут быть не так очевидны, однако проявляются в виде снижения мощности, увеличения расхода топлива, активного и быстрого загрязнения дроссельной заслонки и РХХ. Также в воздушном фильтре может появиться масло и т.д.

Что касается причин, клапан клинит как из-за засорения, так и в результате собственных повреждений. Как правило, первый вариант более распространен. Дело в том, что в картерных газах присутствует сажа, нагар и т.п.

Чем изношеннее мотор, (ЦПГ, другие узлы и системы), тем больше таких продуктов попадает в картер. Также различные загрязнения могут переноситься с микрочастицами масла. В результате грязь и отложения скапливаются в клапане, различных отверстиях, патрубках, каналах. Также рвутся и трескаются сами патрубки.

Как утверждают опытные автомеханики, c появлением стандарта Euro-4 стали встречаться двигатели, которые «падают» в аварийный режим работы при возникновении проблем с вентиляцией картера. При этом проведение компьютерной диагностики ничего не показывает, что усложняет поиск проблемы.

Также указанная система может доставить много неприятностей в зимний период. Дело в том, что в картерных газах содержатся частицы воды. Вода появляется из атмосферного воздуха, который засасывается мотором во время работы. После попадания в систему вентиляции, вода, которая находится в виде пара, может конденсироваться и скапливаться в отдельных местах системы вентиляции. После остывания ДВС влага попросту замерзает и становится льдом, закупоривая систему.

В результате вентиляция перестает работать, давление в картере растет и выдавливает масляный щуп, а двигатель и подкапотное пространство забрызгивает моторным маслом. Причем данная неисправность может возникнуть как на старом двигателе, так и на новом ДВС с небольшим пробегом. Дело в том, что далеко не на всех автомобилях система вентиляции имеет дополнительный обогрев.

Подведем итоги

Отметим, что в мануалах не всегда содержится какое-либо указание или предписание для отдельного обслуживания системы вентиляции картера двигателя. Однако на практике обслуживание должно проводиться, причем регулярно.

Такой подход позволит избежать критического засорения, в результате которого картерные газы попросту выдавят щуп и погонят масло из двигателя. Также чистота системы будет способствовать нормальному процессу смесеобразования, что отразится на приемистости агрегата, расходе горючего и смазки.

Система изменения фаз газораспределения
Рекомендуем также прочитать статью о том, что такое система изменения фаз газораспределения. Из этой статьи вы узнаете об особенностях конструкции и принципах действия указанной системы на различных типах ДВС.

Напоследок отметим, что система вентиляции давно уже перестала являться решением только для снижения давления в картере. Сегодня данная схема является одним из эффективных инструментов для повышения общей экологичности двигателя наравне с системой EGR и установкой катализатора в выпуске. По этой причине современные производители автомобилей продолжают активно использовать и совершенствовать данное решение.

Клапан ЕГР

Назначение и устройство системы рециркуляции отработавших газов. Клапан EGR, система ЕГР высокого и низкого давления. Неисправности системы рециркуляции.

Клапан егр на дизельном двигателе

Почему рекомендуется отключить систему EGR на дизельном двигателе и как правильно отключать ЕГР. Механическое глушение клапана егр и программное отключение.

Изменение фаз газораспределения

Принцип действия системы изменения фаз газораспределения VVT. Гидроуправляемая муфта, ступенчатое регулирование VVTL-i, VTEC. Электромагнитный привод ГРМ.

Мочевина для дизельного двигателя

Для чего используется мочевина в системе очистки выхлопа дизельного двигателя. Применение реагента AdBlue в системе жидкостной очистки отработавших газов.

Очиститель сажевого фильтра дизельного двигателя

Почему забивается сажевый фильтр. Эксплуатация, профилактика. Основные способы очистки фильтра со снятием и без, жидкости для промывки. Как лучше прочищать.

О маслоотделителях двигателей 1.8/2.0 TSI gen.2

Приветствую Вас!
В этой записи хотелось бы обобщить и систематизировать информацию о возможных вариантах маслоотделителей (далее — МО), штатно устанавливаемых на двигатели 1.8/2.0 TSI gen.2 VW, Skoda, Audi, Seat (по состоянию на 09.2017 г.).

Рисунок 1 – Общий вид маслоотделителя 1.8/2.0 TSI gen.2

Рисунок 2 – Маслоотделители 1.8/2.0 TSI gen.2 по ETKA на примере Skoda

1. Маслоотделители для двигателя 1.8 TSI gen.2
Согласно ЕТКА и другой общедоступной информации, на двигатели 1.8 TSI gen.2 устанавливались следующие модели МО:
— 06H 103 495 A;
— 06H 103 495 E;
— 06H 103 495 AC;
— 06H 103 495 AH.

Рисунок 3 – Последовательность замены производителем моделей МО для 1.8 TSI gen.2

2. Маслоотделители для двигателя 2.0 TSI gen.2
Согласно ЕТКА и другой общедоступной информации, на двигатели 2.0 TSI gen.2 устанавливались следующие модели МО:
— 06H 103 495 H;
— 06H 103 495 AD;
— 06H 103 495 AJ.

Рисунок 4 – Последовательность замены производителем моделей МО для 2.0 TSI gen.2

3. Маслоотделители для продольных двигателей 2.0 TSI gen.2 (Audi A4, A5, A6, A8, Q3, Q5 и VW Transporter)
Согласно ЕТКА и другой общедоступной информации, на продольные двигатели 2.0 TSI gen.2 Audi устанавливались следующие модели МО:
— 06H 103 495 J;
— 06H 103 495 AE;
— 06H 103 495 AK;
— 06H 103 495 N;
— 06H 103 495 AG.
Обновлено! (Спасибо за замечание и предложение eisenstahl)
На часть продольных двигателей Audi с завода установлены МО, с номинальной величиной разрежения 25 мбар (см. Рис.6, пример, Audi Q5, по ЕТКА возможна установка МО модели AC):
— 06H 103 495 E;
— 06H 103 495 AC.
Поэтому, перед заменой МО на таких двигателях, а так же для правильного подбора заменителя МО, обязательно следует руководствоваться сводкой TPI 1-84.

Рисунок 5 – Последовательность замены производителем моделей МО для продольных двигателей 2.0 TSI gen.2 Audi и VW

Рисунок 6 – Маслоотделители по ETKA для продольных двигателей 2.0 TSI gen.2 Audi и VW

4. Конструктивные особенности и различия между маслоотделителями двигателей 1.8 TSI и 2.0 TSI gen.2

Рисунок 7 – Маслоотделители двигателей 1.8 TSI (слева) и 2.0 TSI gen.2 (справа)

Для наглядности, на рисунке 7 изображены вместе МО двигателя 1.8 TSI (слева) и 2.0 TSI gen.2 (справа), особенности:
— по габаритным и присоединительным размерам МО идентичны и полностью взаимозаменяемы, т.е. на двигатель 1.8 TSI можно установить МО от двигателя 2.0 TSI и наоборот;
— в МО двигателя 2.0 TSI имеется второй дополнительный клапан (на Рис.7 справа вверху), вопрос о его необходимости и назначении на Drive2 до конца не изучен и вызывает много вопросов) ;
— рабочее разрежение в двигателе, поддерживаемое обоими МО, идентично и составляет 25 мбар (номинально);
— другие отличия отсутствуют.

5. Конструктивные особенности и различия между маслоотделителями двигателей 1.8/2.0 TSI gen.2 и маслоотделителями, устанавливаемых на продольные двигатели 2.0 TSI gen.2 Audi и VW
Согласно информации ETKA и TPI 1-84, при выборе МО необходимо учитывать различие в величине разрежения, создаваемого различными моделями МО. Для двигателей 1.8/2.0 TSI gen.2 величина разрежения должна быть в пределах 25 мбар, а для продольных двигателей 2.0 TSI gen.2 Audi и VW – 100 мбар (см. Рис. 8). Фактические замеры величин разрежений, создаваемых различными моделями МО, будут приведены ниже.

Рисунок 8 – TPI 1-84

Для наглядности, ниже на рисунке 9 изображены рядом МО для продольных двигателей 2.0 TSI gen.2 Audi и VW и МО для двигателей 1.8/2.0 TSI gen.2. По рисунку 9 можно просто увидеть отличие (помимо номера) – часть МО с разрежением 100 мбар выполнена из белого пластика, а МО с разрежением 25 мбар – полностью черный.

Рисунок 9 – МО для продольных двигателей 2.0 TSI gen.2 Audi и VW (100 мбар слева) и МО для двигателей 1.8/2.0 TSI gen.2 (25 мбар справа)

Хотя МО внешне идентичны, основное отличие кроется внутри – пружины клапана под мембраной внутри МО отличаются, что и обеспечивает отличие в рабочих параметрах (см. Рис. 10).

Рисунок 10 – Пружина и мембрана для МО с величиной разрежения25 мбар (слева) и 100 мбар (справа). Фото GAN77

На рисунке 10 хорошо видно отличие в размерах пружин – длине и шаге витков, обеспечивающих различную жесткость пружины, и, следовательно, различную величину разрежения.

6. Практические замеры величин разрежения различных моделей маслоотделителей

Рисунок 11 – Маслоотделитель 06H 103 495 A. Фото suslikrus

Рисунок 12 – Маслоотделитель 06H 103 495 E. Фото suslikrus

Рисунок 13 – Маслоотделитель 06H 103 495 AC. Фото suslikrus

Рисунок 14 – Маслоотделитель 06H 103 495 H. Фото suslikrus

Рисунок 15 – Маслоотделитель 06H 103 495 AD. Фото suslikrus

Рисунок 16 – Маслоотделитель 06H 103 495 N. Фото suslikrus

Рисунок 17 – Маслоотделитель 06H 103 495 AG. Фото suslikrus

7. Схема установки маслоотделителя
Для тех, кто хочет сам поменять МО, ниже на рисунке 18 схема установки МО из ELSA.
Момент затяжки винтов поз.13 (М6х20) — 11 нм, замена винтов после демонтажа МО не требуется.

Рисунок 18 — Схема установки маслоотделителя

8. Заключение и выводы
На основании изложенной выше информации, можно сделать следующие выводы:
— при замене МО необходимо руководствоваться требованиями TPI 1-84;
— заменять МО с рабочей величиной разрежения необходимо только на аналогичный, т.е. устанавливать на двигатель 1.8/2.0 TSI gen.2 (25 мбар) МО от двигателя 2.0 TSI Audi (100 мбар) не рекомендуется (возможно повреждение сальника двигателя из-за повышенного разрежения).

Допустимый порядок замены МО:
1) Двигатель 1,8 TSI gen.2 (с завода установлен МО 06H 103 495 A или 06H 103 495 E, 25 мбар):
— 06H103495 A – 06H103495 E – 06H103495 AC – 06H103495 AH.
2) Двигатель 2,0 TSI gen.2 (с завода установлен МО 06H 103 495 H или 06H 103 495 AD, 25 мбар):
— 06H 103 495 H – 06H 103 495 AD – 06H 103 495 AJ.
3) Продольные двигатели 2.0 TSI gen.2 Audi и VW (с завода установлен МО 06H 103 495 J или 06H 103 495 N, 100 мбар, см. TPI 1-84)
— 06H 103 495 J – 06H 103 495 AE – 06H 103 495 AK;
— 06H 103 495 N – 06H 103 495 AG.

4) Продольные двигатели 2.0 TSI gen.2 Audi и VW (с завода установлен МО 06H 103 495 E или 06H 103 495 AC, 25 мбар, см. TPI 1-84)
— 06H103495 E – 06H103495 AC— 06H103495 AH.

Вопрос необходимости установки МО от двигателя 2.0 TSI gen.2 на двигатель 1.8 TSI и целесообразности такой замены оставлю за рамками данной записи, пусть каждый решает сам).
Для себя уже куплен МО 06H103495AJ, установлю в ближайшее время, пару фоток ниже).

Рисунок 19 — 06H 103 495 AJ

Рисунок 20 — 06H 103 495 AJ

п.с. статья актуальна на 09.2017 г., конструктивная критика, замечания и предложения приветствуются

Картерные газы — это соединение несгоревшей топливовоздушной смеси (далее ТПВС), выхлопных газов и масляной взвеси. Даже в исправном двигателе на такте сжатия через поршневые кольца просачивается часть смеси топлива и воздуха. Уже на такте рабочего хода в картерное пространство поступают выхлопные газы, смешивающиеся с парами моторного масла.

Предназначение системы вентиляции картерных газов (ВКГ)

Вентиляция картера двигателя необходима для постоянного отвода токсичной смеси из несгоревших углеводородов, выхлопных газов и масляного тумана. До ужесточения экологических норм с этой задачей прекрасно справлялся сапун – отрезок шланга, соединяющий блок двигателя и атмосферу.

В современных реалиях вентиляция картера двигателя представляет собой систему закрытого типа. Выхлопные газы подаются во впускной коллектор, где они смешиваются со свежим зарядом и благополучно сгорают в двигателе.

Принцип работы маслоуловителя

Маслоуловитель представляет собой устройство, которое в потоке газа или жидкости способно отделять и улавливать частицы масла. В автомобиле он устанавливается непосредственно в двигателе внутреннего сгорания для препятствования попадания моторного масла в его впускной коллектор.


Устройство представляется собой вытянутую колбу, которая разделена на 2 части конусом. Именно по стенкам конуса масляные частицы стекают вниз. Это происходит вследствие центробежной силы, которая из потока воздушной смеси, попадающей в аппарат через его верхнюю часть, выносит масляные частицы в отдельную полость для сбора через нижнюю часть инерционного циклонного фильтра.

Разделение потоков

Стандартная система вентиляции картера имеет два патрубка подвода газов во впускной тракт. Связанно это с разницей давления перед дросселем и в задроссельном пространстве. В режиме минимальной нагрузки, когда дроссельная заслонка едва открыта, проходное сечение минимально, поэтому наибольшее разрежение как раз в задроссельном пространстве. В режимах большой и полной нагрузки открытая дроссельная заслонка не создает значимого сопротивления протекающему потоку воздуха, поэтому разряжение во впускном тракте минимально. Разделение точек входа позволяет гибко дозировать порцию картерных газов.

Клапан PCV

Клапан системы вентиляции картерных газов необходим для ограничения разряжения. Высокое разряжение, как и избыточное давление, может привести к повреждению сальников. Поэтому клапан PCV открывает доступ картерным газам по мере падения разрежения во впускном коллекторе.

В нормальном состоянии клапан возвратной пружиной удерживается в открытом положении. При работе двигателя на холостых оборотах разряжение преодолевает усилие пружины и перекрывает канал, соединяющий картер двигателя и впускной коллектор. Соответственно, по мере открытия дроссельной заслонки и снижения разряжения возвратная пружина приоткрывает канал для доступа газов.

На многих автомобилях VAG с двухступенчатой системой фильтрации работа клапана PCV заключается в прерывании потока от ступени грубой очистки к ступени тонкой очистки.

Почему клапан PCV важен

Неисправные PCV могут вызывать загрязнение моторного масла, накопление осадка, утечки масла, высокий расход топлива и другие проблемы, связанные с повреждением двигателя, в зависимости от типа неисправности.

Хотя некоторые из этих проблем можно обнаружить до того, как они обострятся с помощью простых проверок, выход из строя клапана PCV или связанных с ним компонентов часто приводит к дорогостоящему ремонту. Это связано с тем, что большинство владельцев автомобилей не включают систему PCV в свои процедуры технического обслуживания. Несмотря на то, что некоторые производители автомобилей предлагают регулярно заменять эту деталь, владельцы автомобилей все равно забывают его заменить. Кроме того, не все производители подчеркивают важность регулярных проверок системы.

Симптомы застрявшего PCV

  • Двигатель пропускает зажигание на холостом ходу
  • Обедненная воздушно-топливная смесь
  • Наличие моторного масла в клапане или шланге PCV
  • Увеличение расхода масла
  • Жесткий запуск двигателя
  • Грубая не стабильная работа двигателя на холостом ходу

Кроме того, заклинивший клапан PCV может вызвать свет « Check Engine » из-за увеличения потока воздуха. А диагностический компьютер может ошибочно показать эту ошибку из-за датчика массового расхода воздуха или кислородного датчика, что затруднит вам выявление реального источника проблемы.

Серьезный вред двигателю

Сгораемые газы оказывают негативное влияние на масло и снижают эффективность работы двигателя. По сути, картерные газы представляют собой недогоревшие остатки топлива и содержат множество вредных примесей, которые оказывают губительное воздействие на окружающую среду. Наличие испарений воды в газах приводит к образованию эмульсии, благодаря которой в масле наблюдается пена. Из-за нее трущиеся элементы не получают достаточного количества смазки, за счет чего быстрее изнашиваются и выходят из строя. А сами пары, которые попадают на масло, разжижают его. Образуются разные примеси, которые оказывают самое губительное воздействие, понижая стойкость практически всех деталей, с которыми соприкасается масло. В результате в несколько раз сокращается ресурс двигателя.

Какие проблемы могут возникнуть

  • Газы смешиваются с маслом. Оно меняет свои физические свойства. Это негативно скажется на ресурсе мотора;
  • Внутри двигателя создается избыточное давление. Это приводит к «выдавливанию» прокладок, сальников. Где есть слабые места в уплотнениях, там будут подтеки масло, масляное запотевание.

Часто на старых авто можно заметить потеки через сальник коленвала, прокладку клапанной крышки. В худших случаях, давление приподнимает масляный щуп.

Поэтому, мы должны удалять эти газы из картера двигателя. Если у вас раздуло живот, вам кажется, что сейчас лопните. Так же и мотор. Ему нужно «пропердеться», извините за выражение. Если он этого не сделает, то вы потратитесь на ремонт и постоянную доливку масла.

Как сделать своими руками

Сегодня в продаже можно найти множество маслоуловителей. Однако большинство из них являются одноразовыми и при этом дорогими. Поэтому многие автовладельцев отдают предпочтение самодельным устройствам, которые можно чистить и использовать долгие годы.

Чтобы сделать фильтр своими руками необходимо:

  1. Взять емкость. В качестве нее можно использовать металлический бачок гидроусилителя от Волги.
  2. В пустой бачок уложить несколько металлических губок для мытья посуды. Они должны занимать пространство, которое ранее занимали фильтр и пружины.
  3. Закрыть емкость встроенной сеткой и корпусом.
  4. Подключить полученное устройство шлангами к системе с двух сторон.

Самодельный маслоуловитель позволит защитить от копоти турбины, свечи зажигания и другие важные детали автомобиля.

Для работы вам потребуется:



Как сделать маслоуловитель своими руками — пошаговая инструкция

1. Сначала необходимо выпаять в одной заглушке два отверстия, после чего в них нужно вкрутить соответствующие переходники. Для надежности все садим на герметик.


2. Шаг второй — вкручиваем в них штуцера, не забудьте про уплотнители.


3. С обратной стороны переходника устанавливается шланг, его можно посадить на клей. Длина шланга рассчитывается исходя учета, что при он не должен доставать до противоположной заглушки примерно 10 мм.


4. Дальше собираем заглушку с муфтой, в нее укладываем металлические губки.





6. В конце все собираем.



Доработка готового устройства

Не каждый автолюбители желает собирать масляный фильтр с нуля, как и отдавать крупную сумму денег за качественное устройство.

В таких случаях можно пойти более легким путем и просто доработать уже готовый, но бюджетный маслоуловитель. Для этого достаточно надеть трубку для входного шланга, разобрать устройство и наполнить его металлическими щетками. В таком случае копоть будет оседать на них, что позволит использовать фильтр несколько раз, так как заменить щетки на новые довольно просто.


Маслоуловитель не только собирает масло из картерных газов, но и позволяет использовать его повторно, что благоприятно сказывается на состоянии ДВС и окружающей среды. Однако встроенные устройства большей частью не подлежат чистке и быстро загрязняются. Поэтому практически каждый автовладелец знает, что производственный инерционный фильтр не приносит никакой пользы и подлежит замене уже после 500 тыс. км пробега.


Чалекс, Леш, это круглая черная хреновина?
А где у нее номер?

Добавлено через 3 минуты

Там вокруг собственно кругляка есть корпус и на его плоской части-площадке есть партнамбер.

titanik

Для начала почитать тему, там я все рекомендации давал. Если вкратце, то исключи МО из вероятных неисправностей просто заткнув впуск КГ на впускном коллекторе пробкой. Трубку КГ оставь висеть просто так. И покатайся пару дней. Перестанет троить, меняй МО или ищи течь снизу двигателя.

Добавлено через 7 минут
Bora, Надо точно мутить датчик давления КГ в стенку картера((

Добавлено через 58 секунд
Rufast, 06H 103 495 AD

Завсегдатай

titanik

По крайней мере его самому заменить - дело на 10 минут.

Добавлено через 4 минуты
Кстати, если растянуть пружину клапана регулировки давления или поставить туда прокладку под штатную пружину или вообще найти более жёсткую пружину, то КГ будут высасываться активнее. Вопрос тут будет уже в другом - какая степень разряжения допустима в картере?)
Есть мысль, что от температуры или бог знает от чего пружина теряет жёсткость и клапан полностью закрывается почти сразу с холостых оборотов. Соотв и КГ практически не выходят. Тошнимся в пробках и давим сальники и прокладки(.

Добавлено через 23 минуты
Могу подкинуть ещё одну идею)) Всё новое это сильно забытое старое)
Предлагаю подумать про ИНЖЕКЦИОННЫЙ отвод КГ. Т.е поскольку отказываться от принудительного высасывания КГ нельзя, то давным давно КГ отводились прямо в выхлопную, потоком выхлопных газов. Соотв. Ставим вместо штатного МО пластину, глушим полностью отвод к турбине, Ввариваем/впаиваем штуцер в крышку на месте штатного МО, обеспечив при этом свободный поток КГ из канала картера под крышку. Шланг----хороший производительный внешний МО-----шланг----штуцер в выхлопную. Масло можно отвести в щуп или прямо в картер.
Турбина чистая, интеркулер чистый, впускной коллектор девственно чистый))

Минус - некоторое увеличение дыма из трубы. Система будет работать естественно в бескатовом исполнении системы выхлопа.


Иногда с автомобилем случаются вещи, которые сильно расстраивают его владельца. Что-то стал жрать масло, дроссельная заслонка постоянно грязная, масло из всех щелей течёт… Даже воздушный фильтр в этом масле. Наверное, пора думать о «капиталке». Деньги, деньги, деньги. Боль, тоска, безысходность. А может, рано точить бритву и наполнять ванну тёплой водой? Может, не всё так плохо, и решение проблемы кроется в маленькой и не такой уж дорогой детальке со странным названием «клапан PCV»?

Теория газов​

Все мы прекрасно помним, что мотор работает вследствие сгорания топливо-воздушной смеси. В момент, когда в камере сгорания начинается этот очень красивый, но невидимый глазу процесс, там резко возрастает давление. Это давление толкает поршень вниз, поршень давит на свою шейку коленвала, а тот выполняет свою непосредственную работы: преобразует поступательное движение шатуна поршня во вращательное, которое передаёт на маховик двигателя. Картинка идеальная, но в жизни, как вы понимаете, что-то всегда идёт не так. В нашем случае не все газы, образующиеся во время горения, выходят потом через выпускной клапан в систему выпуска. Часть их обязательно прорывается в картер. Грубо говоря – под поршень. Происходит это по простой причине: как бы плотно ни прилегали компрессионные кольца, у них всегда есть хотя бы минимальный зазор – иначе поршень просто не смог бы ходить внутри цилиндра. А на холодном моторе этот зазор ещё больше, так что газ, который находится под очень большим давлением, лазейку в картер мотора всегда найдёт. Чем это грозит?

В этих газах есть всё то, чего не любит моторное масло. Не полностью сгоревший бензин, пары воды (они всегда есть в воздухе), частички нагара – всё это оседает в моторном масле. Ничего хорошего, конечно, после этого не происходит: масло усиленно стареет и перестаёт нормально работать. Но это не самое страшное.

Гораздо хуже, что в картере просто не должно быть высокого давления, а картерные газы его сильно увеличивают. Последствия этого процесса очень неприятные. Газы буквально распирают мотор, и он начинает выдавливать из себя всё лишнее. А когда мотор «пучит», лишним ему кажется всё: и картерные газы, и масло. Газы стараются выйти через масляный щуп, выталкивая его наружу, через маслозаливную горловину и все прочие места. В том числе – и через все уплотнения и сальники. Если ему удаются вытолкнуть сальник коленвала, то через него потечёт и масло.


Одним словом, как-то эти газы надо выводить. И для этого придумали систему вентиляции картерных газов.

Открыто и закрыто

Изначально система вентиляции была примитивной – открытого типа (или эжекционная). Помните такое потрясающее слово – сапун? Вот это и было той самой открытой системой вентиляции. Через гордо торчащий сапун в атмосферу выбрасывались картерные газы со всеми их прелестями в виде сажи, масла и прочей гадости. А иногда оттуда ничего не выбрасывалось, потому что особой эффективностью такая система не отличалась.

Не отличалась хотя бы просто потому, что на холостых оборотах давления картерных газов не хватало, чтобы они выводились из мотора. Всё прорвавшееся в картер в нём и откладывалось в масло. Кроме того, всегда была вероятность через сапун хватануть грязного воздуха, который потом оказался бы в картере. Там все примеси из этого воздуха осели бы в масло, а это существенно снизило бы ресурс цилиндро-поршневой группы. В общем, ничего хорошего в сапуне не было, и система прямо-таки требовала серьёзного пересмотра. И в результате такого пересмотра появилась современная система PCV (positive crankcase ventilation) – принудительная система вентиляции.

Системы PCV отличаются по реализации. Они могут быть проще или сложнее, с двумя контурами, с эжекторным насосом, с редукционным клапаном. Но мы рассмотрим самую простую и распространённую систему с одним клапаном PCV. Итак, как это работает?

Разработчики этой системы использовали особенность впускного коллектора: в нём создаётся разрежение. Особенно сильным оно бывает на холостых или минимальных оборотах. Если соединить тот самый воображаемый сапун открытой системы с впускным коллектором, разрежение будет вытягивать картерные газы. Кроме того, они будут поступать опять во впуск, а не в атмосферу, что люто обрадует экологов. Остаётся только решить две проблемы: как дозировать это самое «всасывание» со стороны коллектора и как не дать вместе с картерными газами попасть во впуск маслу и прочим ненужным там фракциям.


Решением первой задачи занимается как раз тот самый клапан PCV. Во время работы на минимальных оборотах он практически закрыт. А значит, в коллекторе остаётся разрежение, а так как в таком режиме выброс картерных газов минимален, даже небольшого их отвода вполне достаточно. По мере роста оборотов коленвала клапан начинает открываться. Это необходимо по двум причинам: во-первых, разрежение падает, а значит, нужно более интенсивно откачивать газы, а во-вторых, количество этих газов растёт. Открытие клапана позволяет удалять большое количество газов даже при небольшом разрежении во впускном коллекторе.

Второй вопрос – это очистка картерных газов. Тут есть несколько способов, но наиболее простой и очевидный – это установка маслоотделителя. В нём есть сложный лабиринт, по которому движутся газы. Во время прохождения лабиринта скорость движения падает, а капельки масла оседают на его стенках, откуда стекают обратно в картер. Более-менее чистый воздух после этого поступает опять во впуск. Конечно, маслоотделители бывают разных конструкций – лабиринтные или центробежные, но задачу они решают одну и ту же.

У системы PCV есть ещё одно небольшое, но важное преимущество: после пуска холодного мотора в мороз в дроссельную заслонку попадает и тёплый воздух из системы вентиляции. Прогрев проходит быстрее и теоретически – менее травматично для холодного пуска. Правда, при условии, что система исправна. А она иногда всё-таки выходит из строя.

Работает или нет?

Существуют десятки способов проверить, работает ли клапан PCV (для краткости – КВКГ, клапан вентиляции картерных газов). Почти все они порождены сумрачным народным гением и сводятся к тому, чтобы проверить, прут ли газы из мотора или нет. Наиболее простой способ – открутить крышку маслозаливной горловины и посмотреть, что произойдёт дальше. Если приложить руку и почувствовать давление валящих оттуда газов – КВКГ не работает. Отчасти правда в этом есть, но не во всём. Потому что если, например, поршневая очень устала жить, то повышенное давление тоже будет. Даже если клапан работает. А на некоторых моторах (например, BMW с Valvetronic, N42, N46 и иже с ними) даже с исправной системой вентиляции некоторое давление может быть, так что этот способ помогает мало. То же самое и насчёт всасывания воздуха. Мол, в исправном моторе крышка будет присасываться к горловине. Обычно – да, но не обязательно. Если всасывается очень сильно, то, возможно, клапан заклинил в открытом положении или у него порвалась мембрана.


Всё то же самое относится и к проверке воздушного фильтра. Масло на этом фильтре – это не обязательно признак почившей системы вентиляции. Оно там может быть из-за той же убитой поршневой группы. Однако если вы уверены, что ЦПГ исправна, а масляный щуп вылетает со своего места, это действительно может быть признаком неисправности системы ВКГ. Особенно если есть сопутствующие проблемы (например, то же масло на воздушном фильтре).

Есть ещё один способ проверки, о котором часто говорят в Интернете, – снять клапан и потрясти им. Если внутри ничего не бренчит, он заклинил. И это тоже не лучший способ диагностики.

Гораздо лучше снять патрубки вентиляции (обычно это сделать не сложно) и посмотреть, что у них там внутри. Если они забиты отложениями, то клапан, скорее всего, тоже забит и, вероятно, не работает. В этом случае патрубки стоит промыть, а клапан просто поставить новый. Заодно есть повод как минимум проверить компрессию: может оказаться, что этот шлак в системе неспроста, и пора подумать о ремонте мотора.


Не стоит забывать о том, что лабиринт маслоотделителя тоже со временем покрывается отложениями. Это приводит к похожим симптомам: в картере растёт давление, возможны течи масла через уплотнения и сальники. В этом случае всё приходится промывать. Самое печальное, что грязные картерные газы могут загадить не только дроссельную заслонку и весь впуск, но и сократить этой дрянью жизнь другой системе – системе рециркуляции отработавших газов EGR. Так что затягивать с ремонтом вентиляции не стоит.

Ну и последнее. Когда маслоотделитель забит, масло может попадать прямо во впуск. Это приводит к дымности, а если система вообще на ладан дышит, то к росту расхода масла. Всё это по симптомам похоже на износ маслоотражательных колпачков или поршневых колец. Не стоит сразу лезть в кубышку (если она вообще есть) и торопиться всё это менять. Иногда достаточно привести в порядок систему вентиляции картерных газов, и проблема решится малой кровью.

Читайте также: