Мероприятия по снижению токсичности отработавших газов двигателей

Обновлено: 16.05.2024

Мероприятия по снижению токсичности и уровня дымности отработавших

Экологические требования к современному автомобилю являются в настоящее время приоритетными. Экологическая безопасность - это свойство автомобиля снижать негативные последствия влияния эксплуатации автомобиля на участников движения и окружающую среду. Она направлена на снижение токсичности отработанных газов, уменьшение шума, снижение радиопомех при движении автомобиля.

Несмотря на многочисленные попытки заменить двигатель внутреннего сгорания каким-либо другим, не выделяющим токсичные вещества, альтернативы ему пока нет.

Наиболее токсичными компонентами отработавших газов бензиновых двигателей являются: оксид углерода (СО), оксиды азота (NОx), углеводороды (СnHm), а в случае применения этилированного бензина - свинец. Состав выбросов дизельных двигателей отличается от бензиновых. В дизельном двигателе происходит более полное сгорание топлива. При этом образуется меньше окиси углерода и несгоревших углеводородов. Но, вместе с этим, за счет избытка воздуха в дизеле образуется большее количество оксидов азота. Дизельные двигатели, кроме всего прочего, выбрасывают твердые частицы (сажу). Сажа, содержащаяся в выхлопе, нетоксична, но она адсорбирует на поверхности своих частиц канцерогенные углеводороды. При сгорании низкокачественного дизельного топлива, содержащего серу, образуется сернистый ангидрид.

Мероприятия по снижению токсичности и уровня дымности отработавших газов: (СЛАЙД № 32)

· не следует бесполезно крутить двигатель стартером длительное время;

· в холодное время года, если двигатель не запустился с первой попытки, необходимо избегать повторных включений стартера через короткие промежутки времени;

· нельзя пускать двигатель путем буксировки;

· запрещается проверять работу цилиндров, отключая свечи зажигания.

На современных автомобилях для снижения выбросов вредных веществ устанавливаются трехкомпонентные каталитические нейтрализаторы. Трехкомпонентными их называют потому, что они нейтрализуют три вредных составляющих выхлопных газов: СО, СН и NO. Трехкомпонентный каталитический нейтрализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение. В качестве катализатора используется платина и палладий, которые способствуют окислению СО и СН, а родий ”борется” с NOx. В результате реакций в нейтрализаторе токсичные соединения CO, CH и NOx окисляются или восстанавливаются до углекислого газа СО2, азота N2 и воды Н2О.

На первый взгляд может показаться, что установка катализатора решает все экологические проблемы. Однако, температура, при которой катализатор начинает действовать (температура активации), находится в пределах 250–350°С. Время же, необходимое для разогрева, может достигать нескольких минут и зависит от типа автомобиля, способа его эксплуатации и температуры воздуха. Холодный катализатор практически неэффективен – следовательно, необходимо уменьшить время достижения температуры активации. Проблему частично решили, приблизив нейтрализатор к выпускному коллектору (такое сочетание часто называют катколлектором). Кроме этого, коллектор изготавливают из тонкостенных стальных труб вместо массивных чугунных и дополнительно утепляют, уменьшив тем самым тепловые потери. Другой способ быстро прогреть нейтрализатор – подать в отработавшие газы дополнительную порцию воздуха и одновременно обогатить смесь. Топливо догорает уже на выпуске, температура выхлопных газов растет, и нейтрализатор быстрее выходит на рабочий режим. Иногда нейтрализатор разогревают электрическим термоэлементом, однако это влечет дополнительные энергозатраты.

Подходы и способы снижения токсичности отработавших газов двигателей внутреннего сгорания

В настоящее время одним из основных источников загрязнения воздуха являются бензиновые двигатели, в то же время снижение токсичности дизелей также является актуальной задачей, учитывая наметившуюся тенденцию дизелизации транспортных средств.

Загрязнение приземного слоя атмосферы городов, характерное при использовании огромного парка устаревших автомобилей, компетентные органы пытаются снизить законодательным ужесточением требований стандартов на нормы компонентного состава отработавших газов двигателя внутреннего сгорания (ОГ ДВС).

Так достижение стандартов Euro-0, -1, -2 и -3 осуществлялось за счет изменения систем подачи топлива и совершенствования систем газораспределения. Снижение окислов азота и сажи, соответствующее стандартам Euro-4, введенным в 2006 году, достигается за счет рециркуляции отработавших газов. Выполнение требований Euro-5 для автотранспортного средства идёт как в направлении оптимизации управляемого процесса сгорания топливной смеси, так и путем совершенствования систем очистки отработавших газов двигателя внутреннего сгорания

Обзор известных литературных данных показал, что основными направлениями снижения экологического влияния автотранспортных средств признаны следующие [1]:

  1. совершенствование конструкций двигателей ТС;
  2. поиск новых видов топлива;
  3. разработка устройств, нейтрализующих ОГ ДВС.

Добиться полной экологической безвредности ОГ ДВС пока не удается даже с использованием электронных систем автомобиля, управляющих работой двигателя с обратной связью, позволяющей оценивать эффективность многошаговых систем нейтрализации токсичных веществ состава ОГ ДВС. Следует отметить, что загрязнение воздуха идет следующим образом (по усредненным показателям): выбрасываемые через выхлопную трубу (65 %), картерные газы (20 %); углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15 %).Что привело к увеличению числа исследований именно по способам очистки ОГ ДВС. Широкое распространение получила нейтрализация отработавших газов в выпускной системе транспортных средств (ТС).

Проведенный анализ технических решений показал, что наиболее многочисленна группа технических решений по каталитической нейтрализации отдельных компонентов ОГ ДВС (преимущественно СО или NO). При чем, в наибольшем количестве изобретений (33,34%) использованы в качестве катализаторов драгоценные металлы; при этом из всего многообразия структурного оформления заявленных нейтрализаторов наиболее часто встречаются нейтрализаторы с сотовым или ячеистым элементом (39,08%) или нанесение катализатора на пленку (20,69%) [1].

Основной традиционный способ очистки выхлопных газов основывается на использовании единого мультифункционального катализатора, который осуществляет наряду с окислением CO, углеводородов, сажевых аэрозольных частиц одновременное восстановление NOx до нейтральных молекул [3].

При этом используются многокомпонентные каталитические системы, содержащие благородные металлы (Pt, Rh, Ir, Pb, Ru и промоторы, нанесенные на блочные носители и фильтры сотовой структуры [5]. Упомянутые каталитические методы не являются универсальными, они содержат дорогостоящие активные компоненты, склонные к отравлению и уносу [6].

Для очистки дизельных выхлопных газов с избытком кислорода приобретает проблема нейтрализации наиболее токсичных компонентов - оксидов азота. Применяют сажевые регенерируемые фильтры-катализаторы с использованием благородных металлов и механические сажевые фильтры, регенерация которых осуществляется с помощью специальных блоков катализаторов или электрических нагревателей, расположенных перед фильтром.

Для подавления оксидов азота в теплоэнергетических выбросах широкое распространение получил метод селективного каталитического восстановления (СКВ) аммиаком как восстанавливающим агентом.

Способ низкотемпературного селективного некаталитического восстановления (СНВ), где в качестве восстановителя используют соединения типа карбамида или его производных, бикарбоната аммония и др., которые удобно вводить в реакционное пространство в виде водного раствора [4]. Также имеются способы с использованием волокнистых и гранулированных носителей, полочного реактора из многослойных металлических тарелок.

Также восстановитель-карбамид вводят на поверхность носителей и селективно расходуют в реакции нейтрализации до полного истощения. Этот метод имеет ряд существенных преимуществ перед СКВ: отпадает необходимость постоянно поддерживать требуемое соотношение реагентов, отсутствие дорогостоящего и нестабильного катализатора, отравляющегося примесями серы, возможность работы при избытке кислорода. Также вводятся специальные окислители (O3, KMnO4, ClO2 и др. ).

Двухстадийный способ очистки газов, включающий использование двух слоев катализаторов. На первой стадии на оксидном цинкхромовом катализаторном слое осуществляется окисление метана, вводимого в качестве восстановителя в кислородсодержащую газовую среду. На второй стадии очищаемые от оксидов азота газы в восстановительных условиях пропускают через второй слой оксидного алюмомедьникельлитиевого катализатора [3].

Из приведенного обзора следует, что универсального способа очистки отработавших газов от комплекса загрязнений в настоящее время не существует. В связи с этим разработка этих технологий диктует необходимость проведения новых научных исследований в этой области.

Список литературы

  • 23 ноября 2020
  • 29 октября 2020

Сравнительный анализ токсичности выхлопных газов автомобилей и пути ее снижения

Произведен анализ загрязнения атмосферы выбросами выхлопных газов автомобилей, описаны их вредные воздействия на окружающую среду и человека, предложено использование природного газа как альтернативного вида топлива в решении экологических проблем.

ABSTRACT

The analysis of atmospheric pollution emissions of exhaust gases of automobiles, described their harmful effects on the environment and humans, there is provided the use of natural gas as the alternative fuel in solving environmental problems.

Ключевые слова: экологические проблемы; отработавшие газы; вредные компоненты; автомобильный транспорт; загрязнение; природный газ; пассажирские перевозки.

Keywords: ecological problems; exhaust gases; harmful components; automobile transport; pollution; natural gas; passenger transportation.

В отработавших газах может содержаться свинец, который опасен для умственного развития людей и особенно губителен для детей, поскольку дети более чувствительны к воздействию токсичного металла. Он опасен еще тем, что накапливается в организме.

Содержащаяся в выбросах сера окисляется и образуются два соединения - диоксид серы (SO2) и триоксид (SO3) серы. При растворении в воде диоксид серы образует кислотные дожди, которые губят растения, увеличивают кислотность озер. Даже при среднем содержании оксидов серы в воздухе (100 мкг/м3), что нередко имеет место в больших городах, растения приобретают желтоватый оттенок. Повышение уровня оксидов серы в воздухе приводит к учащению заболевания дыхательных путей. При совместных концентрациях диоксида серы и взвешенных частиц (в виде сажи и пыли) в у взрослых и детей могут наблюдаться изменения в работе легких.

Химические элементы попадают в организм с выхлопными газами и с выбросами промышленных объектов. Доля загрязняющих веществ, попадающих в атмосферу от автомобилей составляют 75-90 %. Опасности от выхлопных газов превалируют в крупных городах. Выхлопные газы влияют на демографию, рост инвалидности, на здоровье населения. Стремительное развитие автомобильной промышленности, потоки машин в мегаполисах, многочасовые пробки, все это в конечном итоге наносит огромный вред здоровью населения. Загрязнение окружающей среды отрицательно влияет на организм, если физические и химические параметры превышают предельно допустимые концентрации (ПДК) [1].

В настоящее время мировой автомобильный парк насчитывает более 750 млн единиц и продолжает расти. По статистике каждые две секунды с конвейеров автомобильных заводов сходит новый автомобиль, что приводит к резкому повышению автомобилизации населения мира. В 2005 г. на 1000 человек в мире приходилось около 120 автомобилей, а в 2025 г. эта цифра увеличится до 160 единиц [2].

По оценкам зарубежных специалистов, если сегодняшний темп прироста автомобилей сохранится в ближайшие 20 лет, то уже к 2025 г. в мире будет свыше 1,5 млрд автомобилей. Естественно, что столь интенсивное развитие автотранспорта стало оказывать серьёзное негативное воздействие на все компоненты биосферы, причем наибольшая доля загрязнения атмосферы выхлопными газами приходится легковому автомобилю (рис.1).


Рисунок 1. Структурные доли загрязнения окружающей среды различными видами автомобилей, %

Так, только один легковой автомобиль поглощает из атмосферы за год в среднем больше 4 т кислорода, выбрасывая с отработавшими газами примерно 800 кг окиси углерода, около 40 кг окислов азота и почти 200 кг различных углеводородов.

Только в России общее количество вредных веществ, ежегодно выбрасываемых автомобильным транспортом в атмосферу, превышает цифру в 30 млн т.[ 2 ].

Состав и объёмы выбросов во многом зависят от типа двигателя автотранспортного средства. В табл. 1 показан состав вредных веществ в отработавших газах карбюраторных и дизельных двигателей.

Таблица 1.

Состав вредных веществ в отработавших газах карбюраторных и дизельных двигателей. [ 2 ].

Мировая практика регулирования токсичности отработавших газов

В ряде стран созданы регулирующие органы, устанавливающие предельные параметры отработавших газов: в Европе это European Commission (ЕС, Еврокомиссия), в Японии — Ministry of Transport (MIT, Министерство транспорта), в США — Environmental Protection Agency (ЕРА, Министерство охраны окружающей среды), а в штате Калифорния — свой «собственный» орган California Air Resources Board (CARB, Отдел надзора за воздушными ресурсами). Другие страны при регламентировании параметров отработавших газов чаще всего берут за основу либо полностью перенимают законодательство этих стран. При этом в некоторых странах используются откровенно старые данные из тех лет, когда были приняты первые законодательные акты 8 области регламентирования токсичности ОГ.

Европейское законодательство

В 1972 году в странах Западной Европы впервые были утверждены предельные значения для автомобильных выхлопных газов на базе городского цикла (ЕСЕ 15/01). Эти предельные значения постепенно ужесточались до вступления в силу в 1982 году директивы ЕСЕ 1504. В 1992 году была введена ступень Евро-1 и стала обязательной установка на автомобили каталитических нейтрализаторов (катализаторов). Одновременно был принят и новый испытательный цикл движения для легковых автомобилей, так называемый европейский (Neue Europaische Fahrzyklus, NEFZ). Он состоит из городского и загородного циклов. Норма Евро-3 ужесточила предельные количества вредных веществ и требования к испытаниям. Действовавшая ранее 40-секундная фаза холостого хода была упразднена. Теперь проба отработавших газов берется и анализируется сразу после пуска двигателя. Норма Евро-4 начала действовать с 1 января 2005 года для новых типов автомобилей и с 1 января 2006 года для всех новых автомобилей. На сегодняшний день в Евросоюзе действует сертификат Евро-5. Этот стандарт для грузовых автомобилей начал действовать с 1.10.2008 года, а для легковых автомобилей — с 1.09.2009 года. Сертификат Евро-5 был принят в большинстве странах Европейского союза.

Евросоюз планирует принять новый сертификат Евро-6 и еще больше повысить экологические требования. После того, как новый стандарт вступит в силу, все государства-члены ЕС должны отказаться от продаж, регистрации и утверждения автомобилей, которые не соответствуют нормам принятого стандарта. Отсрочку сроком на одим год предусмотрено для транспортных средств, которые удовлетворяют социальные потребности, а также для транспортных средств категории N1 и N2.

Законодательство в области токсичности ОГ в США и Калифорнии

В 1966 году в Калифорнии начали действовать первые в мире ограничения концентрации вредных веществ в выхлопных газах. Содержание углеводородов в те времена превышало сегодняшний уровень в 20 раз, оксида углерода (СО) — в 30 раз, а окислов азота — в 5 раз. С 1975 года они ужесточились до уровня, при котором стала обязательной установка катализаторов двойного действия. Необходимым условием для этого было использование неэтилированного топлива. С 1978 года для соблюдения постепенно ужесточавшихся требований законодательства обязательными стали катализаторы тройного действия. Законодательство штата Калифорния, предъявлявшее более жесткие требования к токсичности ОГ, всегда на пару лет опережало другие штаты США. Штаты, сталкивающиеся со специфическими проблемами качества воздуха, оперативно подхватывают инициативы калифорнийских законодателей. В настоящее время в США применяется испытание, утвержденное Министерством охраны окружающей среды, — так называемый ЕРА Test. Здесь следует сказать, что в стране с 1975 года применяется цикл движения FTP-75 (Federal Test Procedure), состоящий из городского (City Test) и загородного (Highway Test) циклов. Поэтапно к нему добавляется отдельное нагрузочное испытание и испытание для автомобилей с кондиционером (SFTP — Supplemental Federal Test Procedure). Дополнительные испытания проводятся для гибридных автомобилей, для автомобилей CARB OBD и для измерения испаряемости топлива.

С 2004 года вступили в действие еще более жесткие стандарты токсичности ОГ. Постепенно вводятся многочисленные дополнительные предписания, относящиеся к определенным видам автомобильной продукции. Калифорнийское же законодательство постоянно усложняется. В перспективе в этом штате будут действовать шесть ступеней токсичности ОГ, которые впоследствии начнут применяться и в других штатах. Что касается общеамериканского законодательства в области токсичности ОГ, то оно на сегодняшний день не является единым и содержит различные нормы, зачастую не совпадающие по времени принятия и по содержанию. Такого же общего порядка, как в Европе, в США в настоящее время нет. Так, например, предельные выбросы NOx для бензиновых двигателей должны быть уменьшены до 0,0125 г/км, а количество остаточных (несгоревших) углеводородов — до 0,0062 г/км. Для дизельных двигателей действуют предельные выбросы частиц 0,0025 г/км и NOx 0,08 г/км. Ниже расшифрованы различные распространенные сокращения американских норм токсичности ОГ.

TLEV (Transient Low Emission Vehicles)

Ступень для автомобилей с выбросами остаточных углеводородов менее 0,125 граммов на милю.

LEV (Low Emission Vehicles)

Ступень для автомобилей с выбросами остаточных углеводородов менее 0,075 граммов на милю.

ULEV (Ultra Low Emission Vehicles)

Ступень для автомобилей с выбросами остаточных углеводородов менее 0,04 граммов на милю.

SULEV (Super Ultra Low Emission Vehicles)

Еще более жесткая норма по сравнению cULEV. Ступень для автомобилей с выброса ми остаточных углеводородов менее 0,01 граммов на милю и выбросами NOx менее 0,02 граммов на милю.

EZEV (Equivalent Zero Emission Vehicles)

Ступень для автомобилей с практически нулевыми выбросами вредных веществ.

ZEV (Zero Emission Vehicles)

Ступень для автомобилей с нулевыми выбросами вредных веществ.

Все больше моделей автомобилей должны соблюдать все более жесткие требования к составу выхлопа. Особые соглашения между отдельными штатами и автопромышленностью делают ситуацию в США очень сложной. При этом значение имеет также количество продаваемых автомобилей. Текущего контроля эксплуатируемых автомобилей (такого, как контроль по ст. 47 а немецких Правил допуска к эксплуатации) в США нет. Там контроль осуществляется методом случайной выборки. Гарантия соблюдения нормы SULEV законодательно установлена на уровне 150000 миль пробега или 15 лет.

Начиная с 1999 модельного года, в 22-х наиболее загазованных штатах организации обязаны использовать для своего автопарка все больше экологически чистых автомобилей, так называемых Clean Fuel Vehicles. Доля этих автомобилей в 1999 году составляла 30%, в 2000 году 50%, а в 2001 году — уже 70%. Начиная с 2003-го модельного года, в Калифорнии 10% проданных автомобилей одного производителя или импортера должны соответствовать норме ZEV.

Японское законодательство

В Японии нормы токсичности ОГ, для соответствия которым автомобили необходимо оснащать катализаторами, действуют с 1978 года. Они соответствуют тогдашним нормам, принятым в Европе и США. Однако с 1 сентября 2002 года нормы были резко ужесточены до стандартов 2000-х годов для новых автомобилей. Особые, более жесткие требования для дизельных автомобилей вступили в силу 1 сентября 2004 года. Очередное ужесточение предельных значений произошло в 2007 и 2009 годах. Гарантия соблюдения требований к работе систем должна даваться на 80000 км пробега автомобиля. Измерения проводятся по различным испытательным циклам, из которых наиболее важными являются так называемый режим 10+15 (так называемый «горячий пуск») и режим 11 («холодный пуск»). Дополнительно проводятся различные испытания на дымность. Режим 10+15 представляет собой цикл движения, аналогичный европейскому циклу, но протекающий соответственно японским особенностям вождения с более низкими скоростями движения (не более 70 км/ч). Для определенных районов с высокой плотностью населения, таких как Токио или Осака, должны дополнительно выполняться более жесткие показатели предельного содержания NOx согласно закону о контроле содержания NOx в отработавших газах.

Законодательство в отношении токсичности ОГ в других странах мира

Большинство остальных стран перенимают нормы, принятые в США, Европе или Японии. Так, в Австралии и Новой Зеландии действуют нормы Евро, которые вступили в силу практически в то же время, что и в европейских странах. Некоторые государства напрямую признают европейские, американские или японские сертификаты. Это зависит от экономических и политических отношений с теми или иными регионами. С 2007 года в Китае действуют нормы Евро-3, с 2010 года — Евро-4. Для выполнения этих норм на автомобилях с бензиновыми двигателями необходима установка катализаторов. Поскольку это диктует необходимость заправки неэтилированным топливом, должна быть соответствующим образом подготовлена национальная топливозаправочная инфраструктура. С 2010 года для автомобилей с дизельными двигателями начинают действовать нормы Евро-4 и обязательное наличие OBD.

Бразилия тяготеет к американским нормам. Однако в настоящее время это единственная страна, где запрещена эксплуатация автомобилей с дизельными двигателями, за исключением внедорожников, с полезной нагрузкой менее 1000 кг (например, легковые автомобили).

В России приняты нормы Евро-4 для всех новых автомобилей.

Такие страны, как Вьетнам и Таиланд, в ближайшие годы намерены ввести международные нормы токсичности ОГ для новых автомобилей. Это говорит о том, что проблема загрязнения атмосферы вредными веществами, содержащимися в выхлопе автомобилей, перестает быть актуальной лишь для развитых стран, а становится глобальной. Для ее решения требуются совместные усилия многих стран.

Содержание серы в топливе

Большой проблемой в плане глобального соблюдения норм токсичности ОГ является производство высококачественного топлива, в том числе с низким содержанием серы. Без такого топлива системы очистки ОГ не могут работать эффективно, продолжительно и надежно. Для сравнения, в настоящее время в Европе, Австралии и Японии содержание серы в топливе не может превышать 50 промилле, а в других странах (например, в Египте и Марокко) оно может достигать 12000 промилле! В большинстве стран Европы, не входящих в ЕС, предписанный порог содержания серы составляет 350-500 промилле. В Турции же этот показатель намного выше. Многие страны планируют ограничить содержание серы в топливе до 50 промилле и менее (10-15 промилле).

Если автомобили, оснащенные самыми современными устройствами для очистки ОГ, попадают в страны, где используется низкокачественное топливо с высоким содержанием серы, нейтрализация вредных веществ в ОГ ослабляется, а в худших случаях катализаторы просто выходят из строя.

Устройство автомобилей

способы снижения токсичности выхлопных газов

Резкое повышение концентрации вредных веществ в атмосферном воздухе, особенно в крупных мегаполисах, связанное с интенсивным ростом автомобильного парка, не могло остаться без внимания специалистов и экологов. Очевидно, что без автомобильного транспорта невозможно представить динамичное развитие человеческого общества, но и смириться с тем, что ежечасно миллионы людей отравляют свой организм, вдыхая отраву, выбрасываемую из автомобильных глушителей, конечно же, нельзя.
Поэтому разработкам, связанным с уменьшением вредного влияния транспорта на окружающую среду, ученые, специалисты и инженеры в последние годы уделяют все более пристальное внимание.

Конечно же, наиболее привлекательным методом исключения пагубного влияния техники на условия среды обитания человека является внедрение технологий и разработок, позволяющих использовать экологически чистые и безвредные энергоресурсы.

К таковым, безусловно, можно отнести электрическую энергию и энергию, выделяемую при химических процессах, конечным продуктом которых являются безвредные для человека и природы вещества, например, вода, образуемая при соединении водорода и кислорода. Эта химическая реакция сопровождается значительным выделением тепловой энергии, которую можно было бы использовать для преобразования в механическую энергию посредством тепловых двигателей, однако в окружающей нас природе мало свободного водорода, который можно было бы использовать в виде автомобильного топлива.
Конечно, на нашей планете достаточно большое количество воды, в составе которой водорода более, чем достаточно, но расщеплять воду на составляющие элементы для последующего соединения – все равно, что изобретать вечный двигатель, поскольку затраты превысят эффект.

Электричество – экологически чистый и очень привлекательный источник энергии, но преобразовывать другие энергоресурсы в электроэнергию без значительных затрат человечество пока не научилось, как не научилось и запасать в достаточном объеме эту энергию впрок. Даже самый современный аккумулятор электрической энергии способен обеспечить работу автомобиля лишь в течение нескольких десятков километров пробега. Этого для удовлетворения возрастающих автотранспортных нужд, конечно же, недостаточно.

Привлекательным источником энергии является ядерная (атомная) энергия. Но на современном этапе развития технологий преобразования этого колоссального источника энергии в легкодоступные для практического использования виды говорить очень и очень рано.

По этим причинам в ближайшем будущем достойной замены нефтепродуктам, как основным источникам энергии для автомобильных двигателей, не предвидится.

В настоящее время определено несколько путей снижения токсичности выхлопных газов, выделяемых автомобилями и другой техникой, использующих тепловые двигатели, работающие на нефтяном топливе.
Основные направления снижения содержания вредных веществ в отработавших газах:

  • совершенствование процессов сгорания топлива;
  • повышение качества топлива;
  • применение различных способов очистки отработавших газов от токсичных и вредных компонентов.

Полнота сгорания топлива

Совершенствование процессов сгорания топлива выгодно не только с точки зрения экологии, но и экономичности. Полностью сгоревшее топливо отдает максимум тепловой энергии для работы двигателя и выделяет в отходы значительно меньше вредных веществ, чем топливо, сгоревшее частично.

Совершенствование процессов горения топлива связано с решением многих задач – улучшение смесеобразования, повышение эффективности работы газораспределительного механизма, систем питания и зажигания двигателя.

В последние годы значительную долю этих задач конструкторы решают внедрением компьютерных технологий в процессы управления работой двигателя. Управляемые электроникой системы впрыска и зажигания, безусловно, способствуют повышению качества сгорания горючей смеси, и, конечно же, это благотворно сказывается на экологичности тепловых двигателей.

Повышение качества топлива

Повышение качества используемого для работы двигателей топлива, безусловно, имеет колоссальное значение для улучшения эклогичности автотранспорта. В любом топливе, используемом для извлечения тепловой энергии, лишь два химических элемента представляют энергетическую ценность – водород и углерод. Первый при окислении образует воду, второй – либо оксид углерода (при неполном сгорании), либо двуокись углерода (при полном сгорании).
При идеально отлаженной системе питания и зажигания эти два элемента сгорают полностью и отдают двигателю необходимую для его работы теплоту. Но идеального ничего не бывает, поэтому в выхлопных газах, как правило, присутствует некоторое количество оксида углерода, который в быту называют угарным газом.

Любое топливо, в том числе и получаемое из нефтепродуктов, содержит посторонние примеси, химические вещества и элементы в связанном или свободном состоянии. Безусловно, они тоже участвуют в процессах горения, образуя различные окислы, зачастую очень токсичные.
К таковым относятся, в первую очередь различные соединения серы и азота. Выделяя малое количество теплоты, эти вещества значительно обогащают отработавшие газы вредными примесями, т. е. являются крайне нежелательным топливным балластом.

Поэтому повышение качества топлива напрямую связано с его очисткой от механических, сернистых и азотных примесей в процессе переработки нефти. Очень выгодным в этом плане является применение газообразного топлива для двигателей, поскольку в нефтяных и природных газах посторонних примесей существенно меньше, что положительно сказывается на экологичности отходов сгорания.

Нейтрализация отработавших газов

Для очистки продуктов сгорания от токсичных и вредных веществ на двигателях, использующих в качестве топлива бензин, применяют системы нейтрализации отработавших газов вместе с системой их рециркуляции и системой улавливания паров топлива.

Основным элементом в системе нейтрализации отработавших газов является каталитический нейтрализатор, устанавливаемый в выпускной системе автомобильного двигателя.

Нейтрализатор внешне похож на обычный резонатор и часто устанавливается вместо него. Он представляет собой химический реактор с катализатором – веществом, активизирующим протекание реакций превращения одних веществ в другие.
Главными элементами каталитического нейтрализатора являются один или два каталитических сотовых блока, представляющие собой керамические или листовые гофрированные металлические цилиндры с множеством продольных каналов. На поверхность этих каналов (сот блока) нанесен пористый каталитический состав, содержащий благородные металлы (платина, палладий, родий).
Каталитический блок помещается в корпус из жаростойкой и коррозионно-стойкой стали.

Все современные нейтрализаторы являются трехкомпонентными, т. е. предназначенными для снижения выброса трех основных токсичных компонентов отработавших газов и сочетают в себе сразу две химические функции: окислительную и восстановительную.
Нейтрализатор одновременно дожигает (окисляет) не полностью сгоревшие частички топлива и продукты его неполного сгорания (в первую очередь - оксид углерода), а также восстанавливает очень ядовитые оксиды азота, разлагая их на исходные составляющие – азот и кислород.

уменьшение токсичности отработавших газов

При использовании каталитического нейтрализатора нельзя применять этилированный бензин, поскольку содержащийся в нем свинец, осаждаясь на внутренних поверхностях выпускной системы, нарушает газовую проницаемость микропор активного каталитического слоя.
В результате отработавшие газы свободно выходят в атмосферу, не соприкоснувшись с активной поверхностью катализатора.

Нейтрализатор отработавших газов начинает эффективно работать при температуре не менее 300 ˚С, при этом он начинает дополнительно разогреваться в результате происходящих в нем химических процессов. Важно так разместить нейтрализатор в системе выпуска отработавших газов, чтобы его температура во время работы не превышала 900…950 ˚С, иначе возможно разрушение каталитического слоя, сот и даже корпуса нейтрализатора.
В этом случае сгоревший нейтрализатор не только перестает выполнять свою функцию, но и существенно снижает мощность двигателя, оказывая сопротивление выпуску отработавших газов, и ухудшая тем самым наполняемость цилиндров свежим зарядом.

Особенно велика вероятность повреждения нейтрализатора при отказе в работе одного из цилиндров двигателя. При этом несгоревшая в цилиндре горючая смесь загорается в нейтрализаторе, интенсивно разогревая и сжигая активную каталитическую поверхность его сот.

Для обеспечения эффективной работы нейтрализатора отработавших газов и точного дозирования топлива, подаваемого в цилиндры двигателя, используется лямбда-зонд, или кислородный датчик, который отслеживает состав выхлопных газов и корректирует посредством электронного блока управления количество подаваемого в цилиндры топлива.

Образование смеси

Дизельное топливо характеризуется более высокой температурой кипения, чем бензин. В дизеле отводится меньше времени на приготовление топливо-воздушной смеси, что является одной из: причин ее меньшей однородности. Диком в них воздуха (А > 1); недостаточное количество воздуха в смеси приводит к увеличению выброса сажи, СО и СН.

Процесс сгорания

Сгорание начинается при впрыскивании топлива через форсунку. Время впрыскивания оказывает основное влияние на эффективный к. п. д. двигателя. Повышение температуры сгорания увеличивает образование в отработавших газах оксидов азота (NOx).

Мероприятия по снижению токсичности отработавших газов

Конструктивные мероприятия

Камера сгорания

Двигатели с разделёнными камерами сгорания обеспечивают получение меньших концентраций оксидов азота в отработавших газах, чем двигатели с непосредственным впрыском топлива. С другой стороны, последние характеризуются лучшей топливной экономичностью. Для получения рабочей смеси, обеспечивающей полное сгорание, вихревое движение воздуха в камере сгорания должно сочетаться с правильно подобранным факелом топлива.

Впрыскивание топлива

Позднее впрыскивание позволяет снизить выброс оксидов азота (NOx), однако слишком позднее впрыскивание приводит к увеличению расхода топлива и повышенному выбросу углеводородов (СН) Увеличение на 1° (по углу поворота коленчатого вала) начала впрыскивани; может привести к повышению на 5% выбросов NOx, в то время как выбросы СH при этом могут увеличиться на 15%. Электронные системы управления: способны поддерживать оптимальны момент впрыскивания с высокой степенью точности. Очень высокая точность может быть достигнута за счет управления началом впрыскивания непосредственно через форсунку при использовании датчика перемещения игольчатого клапана (управление началом впрыскивания топлива). Топливо, попадающее в камеру сгорания после окончания процесса сгорания, будет поступать непосредственно в выпускную систему в несгоревшем виде повышая уровень выбросов углеводородов в отработавших газах. Для предотвращения этого явления объем топлива между посадочным отверстием форсунки и распылительным наконечником должен быть минимальным. Необходимо также исключить подтекание топлива из форсунки и позднее впрыскивание. Мелкодисперсная струя распыла топлива способствует образованию оптимальной смеси топлива с воздухом. Мелкодисперсный распыл, снижающий выброс сажи (твердых частиц) и углеводородов, может быть получен при высоком давлении впрыскивания и оптимальной геометрии отверстий распылителя. Коэффициент избытка воздуха должен быть не ниже А =1,1.-.1,2.

Температура воздуха на впуске

Чем выше температура воздушного заряда, тем выше температура сгорания с пропорциональным увеличением выбросов оксидов азота. На двигателях с турбонаддувом охлаждение сжатого воздуха на впуске (промежуточное охлаждение) представляет эффективный способ снижения NOx.

Cостав и температура отработавших газов

Рециркуляция отработавших газов

Часть отработавших газов направляется во впускную систему для уменьшения количества кислорода в свежем заряде с одновременным увеличением его теплоемкости. Оба этих фактора приводят к понижению температуры сгорания и, таким образом, снижению образования NO. Повышенное количество рециркулируемых газов вызывает более высокие выбросы сажи и оксида углерода из-за недостатка воздуха в смеси. Поэтому количество рециркулируемых отработавших газов должно быть ограничено.

Очистка отработавших газов

Выброс углеводородов может быть уменьшен при использовании в выпускной системе каталитических нейтрализаторов. В них часть газообразных углеводородов, включая и те, что соединяются с твердыми частицами (сажа), сгорают в присутствии кислорода, содержащегося в отработавших газах. Для снижения выбросов твердых частиц (сажи) в настоящее время используются специальные фильтры, устанавливаемые в выпускной системе автомобиля.

Испытания двигателей на токсичность

Все более ужесточающиеся нормы определяют снижение предельного содержания количества токсичных комонентов в отработавших газах. Эти выбросы могут быть замерены при заданных определенных условиях работы двигателя. >

Схема испытаний

Как правило, выбросы токсичных веществ с отработавшими газами двигателей определяются на стенде с беговыми барабанами (для легковых автомобилей) или на испытательном моторном стенде (грузовые автомобили). Многие нормы предельного содержания токсичных компонентов в отработавших газах и методы испытаний автомобилей на токсичность были впервые внедрены в США, где способ отбора проб (газа) постоянного объема был применен в качестве эффективного способа для контроля за выбросом твердых частиц при динамических испытаниях. При этой процедуре отработавшие газы разбавляются отфильтрованным окружающим воздухом и отбираются посредством ротационного насоса во время стандартизованного цикла испытаний. Разбавление отработавших газов воздухом устраняет вероятность конденсации в них влаги и одновременно удерживает их температуру на уровне, требуемом для измерения содержания твердых частиц (52°С). Одна проба пропускается через специальный бумажный фильтрующий элемент, где осуществляется определение уровня выброса твердых частиц за счет измерения увеличения массы пробы.

Вторая нагретая проба газа направляется в пламенно-ионизационный детектор, в котором производится непрерывный контроль за концентрацией углеводородов. Третья проба отправляется в сборник отработавших газов. После окончания цикла испытаний его содержимое направляется в газоанализатор, где производятся замеры концентраций СО, МОх и СО2. Расчеты для определения уровней выбросов различных компонентов отработавших газов базируются на данных об объеме смеси газов и концентрации отдельных их компонентов. В США для проверки легковых и грузовых автомобилей на токсичность отработавших газов применяются одни и те же методы и газоанализаторы. Отработавшие газы обычно разбавляются дважды, что дает возможность пропускать большие объемы газа через трубопроводы приемлемого размера. В европейском цикле испытаний также применяется разбавление части газового потока воздухом при замерах содержания твердых частиц в отработавших газах. После измерений концентрации твердых частиц проводятся дополнительные проверки непрозрачности этих газов как в стационарных условиях, так и при движении с полной нагрузкой.

Испытательные циклы и нормы токсичности в Европе

Легковые и малотоннажные грузовые автомобили

Нормы предельной токсичности отработавших газов,принятые в Европе,базируются на Директивах R15 ЕЭК и 70/220 ЕЭС, а также дополнениях к этим документам. Существующие нормы для малотоннажных грузовиков (полной массой менее 3,5 т) указаны в Директиве 93/59 ЕС/ЕЭС. Менее строгие нормы применяются для дизелей с непосредственным впрыскиванием топлива.

Предельная токсичность отработавших газов легковых автомобилей (с числом сидений 6 и более, массой <, 2,5 т) регламентируется в Директиве 91/441 ЕС/ЕЭС.

Следующим шагом в ужесточении норм токсичности является Директива 1997 г. ЕС 94/12. Дальнейшее ужесточение предельных норм токсичности планируется осуществить в 2000 г. Используемый ранее ездовой цикл ЕСЕ (ЕЭС) R15 был заменен модернизированным европейским ездовым циклом (включающим часть цикла, относящуюся к движению по загородным дорогам со скоростью движения вплоть до 120 км/ч). Предельные нормы дымности, рассмотренные в правилах ЕЭК R24 и ЕЭС 72/306, остаются в силе.

Нормы токсичности для грузовиков (полная масса <3,5т ). Ездовой цикл: модернизированный европейский цикл; временный вариант при Vmax = 90км/ч для автомобилей с максимальной скоростью < 130 км/ч и/или отношением мощности к массе < 30кВт/т.

Нормы токсичности для легковых автомобилей (полная масса <2,5т ). Ездовой цикл: модернизированный европейский цикл ЕЭС R 15 и ЕС (Директивы).

Так называемая "стокгольмская группа" государств (включая Швецию, Швейцарию, Австрию) приняла нормы по предельной токсичности, базирующиеся на нормативах США (1987 г.). Швеция также проявила инициативу в вопросе создания системы штрафов за несоблюдение более строгих норм предельной токсичности.

Грузовые автомобили

В Европе автомобили полной массой свыше 3,5 т, которые имеют более чем 9 мест для сиденья, проходят 13-режимные испытания, регламентированные правилами ЕЭК R49. Последовательность испытания - это серия из тринадцати различных стационарных рабочих режимов. Первоначально принятые предельные нормы выбросов газообразных компонентов были ужесточены, и в новые нормативы были включены требования по предельным выбросам твердых частиц в отработавших газах. Существующие предельные значения выбросов в странах ЕС приведены в нормативах Стадии 1 (EURO I) и Стадии 2 (EURO II) ЕЭС директив ЕЭС 91/542; последние предназначены для автомобилей серийного производства, начиная с октября 1996 г. Дополнительное снижение норм предельной токсичности планируется в 1999 г. Пересмотр испытательного цикла также предполагается осуществить на Стадии 3 (EURO III). Тем временем нормы, касающиеся контроля за дымностью отработавших газов дизелей, работающих при полной нагрузке (Директива ЕЭК R24), бьши оставлены без изменения, хотя имеющее место значительное снижение уровней твердых частиц в отработавших газах делает их не совсем приемлемыми.

Испытательные циклы и нормы токсичности в Японии

Легковые автомобили

Для определения концентраций газообразных токсичных компонентов и твердых частиц в отработавших газах дизелей используется ездовой цикл 10.15. Этот цикл расширен включением в него высокоскоростного режима испытаний (подобного европейским циклам).

Грузовые автомобили

Выбросы токсичных компонентов замеряются с использованием нового 13-ступенчатого стационарного цикла испытаний, введенного в Японии и отличающегося от того, что имеет место в 13-режимном европейском испытательном цикле.

Нормы токсичности отработавших газов для легковых автомобилей с числом сидений 10 или менее. Ездовой цикл: Многоступенчатый 10.15, 3 - режим испытания дымности.

Нормы токсичности отработавших газов для грузовых автомобилей полной массой более 2,5т. Ездовой цикл: 13- режимный цикл испытаний, 3- режимный цикл испытаний на дымность.

Испытательные циклы и нормы токсичности в США

Легковые и малотоннажные грузовые автомобили

Федеральный цикл испытаний (FTP 75) применяется для легковых и малотоннажных грузовых автомобилей полной массой не более 3,9 т. График скорости соответствует ездовому циклу работы автомобиля в условиях города (США). Испытания проводятся с использованием стенда с беговыми барабанами, и измерения осуществляются посредством метода отбора проб постоянного объема.

Тяжелые грузовые автомобили

Начиная с 1987 г., тяжелые грузовые автомобили испытываются на моторном стенде с использованием ездового цикла; замеры проводятся в соответствии с методом CVS. Испытательный цикл выбран с учетом реальных условий движения по автомагистралям.

Предельные значения токсичности легковых автомобилей в США.

Нормы токсичности отработавших газов дизельных тяжелых грузовых автомобилей полной массой > 3.9т

Оборудование, используемое для испытаний на токсичность

Испытания дизелей на токсичность осуществляются как в виде дополнительной процедуры, так и во время проведения регулярных техосмотров автомобилей. Для этой цели применяются два стандартизованных метода. По первому методу определенное количество отработавшего газа пропускается через фильтрующий элемент. Степень обесцвечивания фильтра характеризует содержание сажи в отработавших газах. Абсорбционный метод (испытание на непрозрачность или потемнение газа) основан на определении снижения яркости луча света, пропускаемого через отработавшие газы. Определение дымности отработавших газов дизелей должно осуществляться под нагрузкой. Здесь наиболее распространены два разных метода проведения испытаний: испытания при полной нагрузке, осуществляемые на испытательной трассе с торможением автомобиля; испытания при свободном ускорении с кратковременным нажатием на педаль газа; нагрузка при этом создается возвратно-поступательно перемещающимися и вращающимися массами самого двигателя, работающего в режиме ускорения.

Дымомер (оптический метод)

Насос прокачивает часть отработавших газов, поступающих из пробоотборного зонда через камеру. Это необходимо для уменьшения влияния колебаний давления отработавших газов на результаты испытаний. Через отработавшие газы, находящиеся в испытательной камере, пропускаются световые лучи. Фотоэлементы регистрируют снижение интенсивности света после прохождения камеры; это снижение соответствует непрозрачности Т (в %) или коэффициенту абсорбции k. Для получения полных и точных результатов испытательная камера должна иметь определенную длину. Во время испытаний под нагрузкой обеспечивается непрерывный процесс измерений дымности с индикацией получаемых данных. Дымомер автоматически определяет максимальное значение и производит расчет среднего значения для нескольких периодов подачи газа.

Дымомер (метод прокачки через фильтр)

Устройство обеспечивает пропуск определенного количества отработавших газов через бумажный фильтрующий элемент. На каждой стадии испытаний осуществляется регистрация объемов анализируемого газа, что позволяет получить полные и сравнимые между собой результаты. Система также позволяет контролировать и компенсировать действие других факторов (давления, температуры и др.). Для оптико-электронной оценки почернения фильтрующей бумаги применяется

светоотражающий фотометр. Результаты представляются в виде показателя сажесодержания Бош или массовой концентрации сажи в газе (мг/м3).

Системы нейтрализации отработавших газов: дорогая наша экология


Мир свихнулся на экологии. Парниковый эффект, озоновые дыры, глобальное потепление и затемнение. Ученые приводят цифры и демонстрируют графики, политики подписывают протоколы. И хотя споры о том, насколько различные выбросы в атмосферу изменяют климат планеты, ведутся до сих пор, автопроизводители уже давно на острие борьбы за чистоту воздуха. Все потому что общие климатические трансформации — это одно, а экология в городах, особенно мегаполисах, — несколько иное. В итоге приходится признать: современные компоненты очистки выхлопных газов разрослись до отдельных систем, плотно интегрированных в бортовую электронику. Если топливо качественное, и автомобиль еще новый, проблем с ними обычно нет. Однако с годами они могут появиться. Речь идет не только о «чековании», или электронных ошибках. Выход из строя каталитических нейтрализаторов способен привести к куда большим неприятностям, вплоть до необходимости восстановления поршневой группы двигателя.

Не нужно считать, что скопления углеводородов (CH) и окислов азота (NOx), под воздействием солнечного света и химических реакций превращающихся в смог, — примета лишь современности. Первое упоминание об удушливых облаках, повисающих над городом, относится к 1942 году. Дело было в промышленно развитой Калифорнии. Спустя восемь лет смог для этого штата стал обычным явлением, из-за чего во второй половине 60-х в нем вступили ограничения по концентрации вредных выбросов в выхлопе. Остальная Америка пришла к этому позже. В 1970 году был принят закон, по которому для автомобилей 1975 модельного года строго регламентировалось процентное содержание CH, NOx и окиси углерода (CO). В это же десятилетие к законодательному регулированию вредных выбросов пришли в Европе и Японии.



Каталитические нейтрализаторы, или конвертеры (в народе просто катализаторы), появились как раз в первой половине 70-х и, как вы понимаете, автопроизводители США какое-то время здесь были на передовых ролях. Что любопытно, помимо непосредственного снижения токсичности выхлопа эти устройства потянули за собой модернизацию сразу нескольких направлений развития автомобилестроения. Это обуславливалось самим принципом их действия, который, кстати, не изменился до сих пор.


Экология — двигатель прогресса

Металлический бочонок, расположенный между выпускным коллектором и глушителями-резонаторами, имеет внутри продольные соты, на чью поверхность нанесен слой специального вещества, являющегося катализатором. Не будем погружаться в школьный курс химии. Скажем лишь, что в качестве последнего, превращающего вредные CO и CH в углекислый газ и воду, используется платина с добавлением палладия. Такие катализаторы назывались двухкомпонентными, то есть способными нейтрализовать всего пару токсичных компонентов. В 1977 году добавили родий, благодаря чему окислы азота трансформировались в моноэлемент. Нейтрализаторы стали трехкомпонентными. Так вот, этот сравнительно простой химический процесс без проблем протекает лишь в идеальных лабораторных условиях. При реальной же эксплуатации производители столкнулись с тем, что корректная работа узла и вообще его ресурс — под постоянной угрозой. Как выяснилось, правильно «химичить» конвертер может лишь при соотношении горючей смеси по воздуху и топливу в пропорции 14,5–14,7:1. Отклонения в ту или иную сторону снижают эффективность преобразования CO и CH либо NOx. А единственная заправка этилированным бензином в состоянии попросту приговорить нейтрализатор — октаноповышающий тетраэтилсвинец сводил действие платины и палладия к нулю.


Для того чтобы сделать топливовоздушную смесь стабильной, карбюраторы начали дополнять электронным управлением. В 1975 году в Штатах же появились транзисторные системы зажигания, к минимуму сводившие пропуски в искрообразовании, от которых топливо догорало в нейтрализаторе и спекало его внутренности. Обратились к системе рециркуляции отработавших газов, которая, снижая температуру сгорания топливной смеси, уменьшает количество окислов азота. Наконец, борьба за экологию, как и желание снять побольше мощности, тоже поспособствовала скорейшему внедрению электронного впрыска — системы, способной наиболее полно раскрыть потенциал катализаторов. Тогда же, в 70-х, произошло еще одно событие — под действием законов и общественности нефтепромышленники отказались от присадок на основе тетраэтилсвинца.


А нейтрализаторы продолжили совершенствовать. Четверть века назад бочонок двинулся из-под днища автомобиля в моторный отсек, вплотную к выпускному коллектору. Это понадобилось для быстрейшего его прогрева и уменьшения вредных выбросов сразу после пуска автомобиля — вещества-катализаторы начинают действовать только при 250–300 градусах. Позже предлагались разработки отдельного электроразогрева нейтрализатора мощностью до нескольких кВт. Были системы из двух нейтрализаторов, где первый располагался непосредственно в тракте и работал, пока прогревался основной узел. Устраивались адсорбционные ловушки для углеводородов, придерживавшие их до выхода катализатора на рабочую температуру. Велись и ведутся эксперименты с материалами наполнителя. Жаропрочная керамика сравнительно тяжела и далеко не идеальна для создания сверхтонких сот. Металл для ячеек использовался и ранее, а теперь к нему обращаются вновь — на ином технологическом уровне, используя различные биметаллические сплавы. Легкие, устойчивые к температуре, тонкие, как фольга, благодаря чему можно значительно увеличить площадь напыления платины, палладия и родия.


Не отставали от «химиков» и электронщики. Лямбда-зонд, или кислородный датчик, расположенный в выпускном тракте, определяющий процент кислорода в выхлопе и посылающий сигнал на коррекцию смеси в ЭБУ, появился еще в 1976-м. Потом добавили датчик за нейтрализатором, который следит за качеством очистки газов.


Избавиться от сажи!

В начале 2000-х дошла очередь до дизелей. Их, оборудованных привычными уже каталитическими нейтрализаторами, стали оснащать сажевыми фильтрами (DPF, Diesel Particulate Filter). Дело в том, что температура выхлопных газов в режимах без нагрузки здесь ниже, чем у бензиновых моторов. Ее не хватает для полного сжигания углеродов, так получаются твердые частицы или сажа, которая может пройти через нейтрализатор.

Сажевый фильтр расположили перед катализатором. В нем тоже есть платина и такие же соты-каналы. Только расположены последние в шахматном порядке и делятся на впускные и выпускные. А между ними — фильтры-перегородки, сдерживающие твердые частицы с окислами азота. Первыми его внедрили французы из Peugeot, чуть позже немцы. Toyota в 2003-м пошла дальше — изобрела DPNR (Diesel Particulate NOx Reduction). Вроде бы тот же DPF, однако с принципиальным отличием. Он не накапливает твердые частицы — дожигает их при помощи кислорода, выделяемого из окислов азота, и дополнительной форсунки, подающей солярку в узел. Аналогом тойотовской системы является FAP (Filtre A Particules) от Peugeot. В ней для очищения фильтра от сажи служит присадка на основе редкоземельного элемента церия, которая впрыскивается в дизтопливо по сигналам ЭБУ. Что-то подобное встречается на некоторых моделях Citroen, Ford, Volvo.

Причем японцы всей системе DPNR дают гарантию, равную гарантии автомобиля. Нечто неординарное! Обычно элементы очистки выхлопных газов из договора о ней выводятся. Впрочем, о массовых проблемах с тойотовской NOx Reduction слышать не приходилось. Иное дело обычные DPF и катализаторы — что на дизелях, что на бензиновых моторах.



Очищают выхлоп и с помощью мочевины или AdBlue, как этот продукт называется в Европе — жидкости на основе аммиака, которая реагирует с NOx, после чего образуется просто азот и водяной пар. Впервые появившаяся на Mercedes в 2005 году мочевинная нейтрализация получила большее распространение на тяжелой технике, где она выступает альтернативой системе EGR.


Избавиться от нейтрализатора!

В России своя специфика. В той же Европе какое-то время назад чуть ли не в принудительном порядке нейтрализаторы начали устанавливать даже на олдтаймеры. А у нас. Бережное отношение к окружающей среде, безусловно, необходимо. Да и смог в российских мегаполисах уже не редкость. От этилированного бензина, опять же, мы давно успешно избавились. Официально! Между тем качество топлива без «свинцовой» присадки, скажем так, варьируется, и солярка по-прежнему может преподносить сюрпризы.

Ко всему прочему оставляет желать лучшего понимание того, с каким сложным и нежным узлом мы имеем дело. От этого страдает общая культура его эксплуатации. Так что же нужно знать и чего остерегаться?

Например, жестких контактов корпуса нейтрализатора о поверхность, от которых может разрушиться керамика. Переливов бензина в камеры сгорания — при неудачных пусках, пропусках зажигания и т. д. — когда топливо собирается в катализаторе и, не успев испариться, воспламеняется и спекает его соты. Попадания туда масла. Сажевый фильтр на дизеле вообще очень требователен к состоянию топливной аппаратуры. Наконец, даже парковать машину надо с умом — не над кучами листьев, сухой травой, прочими легкогорючими массами, способными вспыхнуть от раскаленного корпуса катализатора.




Кстати, иной раз начинающие разрушаться керамические соты могут никак о себе не заявлять. Положиться здесь можно только на удачу. Либо на собственную осторожность — вскрыть, посмотреть. Хотя и вскрыть-то в некоторых случаях не удастся — на тех же катколлекторах. Но что делать, если все очевидно? Обратимся к специалистам. Фирм, оказывающих такую услугу, в крупных городах достаточно. И варианты существуют. Впрочем, тут многое зависит от марки, модели, даже рынка сбыта. И как бы это странно ни звучало, от программного обеспечения ЭБУ.



— Услуга популярная. Обращаются владельцы как далеко не новых иномарок, так и совсем свежих. В первом случае, особенно если говорить о немолодых «японцах», все просто. Вынул внутренности нейтрализатора, обычно выполненные из металла, — машина обрела потерянную динамику. Блок управления двигателем не видит этих изменений. У сравнительно новых моделей такой трюк не проходит — из-за четкой привязки системы управления к показаниям двух лямбда-зондов.

Иногда, если это позволяет компоновка и сечение труб, удается установить катализатор от Патриота, стоит всего 4000 руб. Те же «японцы» (в частности, Toyota), но не самых последних поколений, где программное обеспечение загружено без возможности перепрошивки, обманываются механически. В выпускной тракт после удаления ячеек вкручиваются проставки с отверстием по центру, а уже в них — кислородные датчики. Будучи несколько отодвинутыми от потока выхлопных газов, они дают блоку управления ту же информацию, что и при наличии работоспособного нейтрализатора. Здесь приходится играть сечением отверстия в проставке. Получается всегда, однако была на моей памяти 3,5-литровая Camry 2006 года. Долго с ней работали — исчезала ошибка, но через какое-то время опять появлялась. В итоге так и ушла к другому владельцу. Стоит подобная процедура от 3000 руб. Это только удаление, и по 500 руб. за каждую проставку.


Системы управления свежих «европейцев» и «американцев» механическими «обманками» не корректируются. Нужно лезть в софт и убирать информацию о катализаторе. Lexus для заокеанского рынка требуют того же. В отличие от внутренних моделей этой марки. В любом случае — пренебрегать проблемами с нейтрализаторами нельзя. И пробитие керамики ломом здесь не панацея. Удалять нужно все начисто. Машины из-за попадания керамической пыли в цилиндры на капитальный ремонт к нам приходят периодически. Toyota, Nissan, Infiniti — с моторами серий GR, VQ, VK. Но это те двигатели, с которыми сталкивалась наша СТО. Риск, если в вашей машине катализатор расположен близко от выпускного тракта, существует вне зависимости от модели агрегата.


— Toyota даже из новых можно «обмануть» так называемым эмулятором, который устанавливается в цепь кислородного датчика. Так происходит простое удаление ошибки. То же самое можно проделать и со многими «японцами», в чьи ЭБУ информация «залита» жестко, без возможности коррекции. Цена вопроса — 18 000–21 000 руб. за эмулятор плюс 3000 руб. за освобождение полости нейтрализатора от наполнителя. Оставляем штатный корпус — звук выхлопа если и становится другим, то это едва заметно.

Сейчас ситуация активно меняется — японские производители приходят к блокам управления, в которых можно перепрошивать программное обеспечение. Для компаний из Европы и США это едва ли не традиция. В общем-то также ничего сложного — прошивка замещается той, что отвечает экологическим требованиям Евро-2, для соответствия которым нет необходимости в каталитическом нейтрализаторе. Тут не важно, бензиновый двигатель или дизельный. С последними, кстати, владельцы обращаются тогда, когда уже не помогает прожиг сажевого фильтра. Стоимость удаления аналогична — 3000 руб. Однако работы по электронике сильно зависят от марки и модели. Можно обойтись 14 000–16 000 руб. А в иных случаях цена поднимается до 40 000–50 000 руб. Все равно минимум вдвое дешевле, чем покупка оригинального каталитического нейтрализатора.

Еще добавим, что в качества альтернативы уазовскому катализатору существуют условно универсальные узлы, которые нужно подбирать по длине и диаметру. Предлагаются даже блоки без внешней оболочки. Цена того и другого — от 4000 до 11 000 руб. Для «американцев» доступен другой вариант — трубы, устанавливаемые вместо бочонка нейтрализатора, удаление бака с мочевиной, глушение системы рециркуляции и установка программатора, с которого можно менять прошивку ЭБУ и увеличивать мощность. Но этот обход экологии граничит с тюнингом и тянет минимум на $2500–3600. Между тем на многих дизелях, в отличие от бензиновых моторов, «ампутация» элементов EGR необходима в отрыве от всякой форсировки — прогорают промежуточные охладители выхлопных газов.



Словом, современные экотехнологии — тоже в духе нынешних тенденций автомобилестроения. Ладно, требуют вложений средств. Но могут и приговорить святая святых. Тот, кто один раз столкнулся с вынужденным ремонтом ЦПГ, вряд ли будет в будущем покупать новый катализатор — хоть универсальный, хоть от Патриота. Решит проблему кардинально.

Читайте также: