Температура нагревателя идеального газа теплового двигателя карно 227

Обновлено: 15.05.2024

Термодинамика и молекулярная физика

1. При температуре 250 K и давлении плотность газа равна Какова молярная масса этого газа? Ответ приведите в кг/моль с точностью до десятитысячных.

2. Воздух охлаждали в сосуде постоянного объема. При этом температура воздуха в сосуде снизилась в 4 раза, а его давление уменьшилось в 2 раза. Оказалось, что кран у сосуда был закрыт плохо, и через него просачивался воздух. Во сколько раз увеличилась масса воздуха в сосуде?

3. Температура нагревателя идеального теплового двигателя Карно 227 °C, а температура холодильника 27 °C. Рабочее тело двигателя совершает за цикл работу, равную 10 кДж. Какое количество теплоты получает рабочее тело от нагревателя за один цикл? Ответ приведите в килоджоулях.

4. Из стеклянного сосуда стали выпускать сжатый воздух, одновременно охлаждая сосуд. При этом температура воздуха упала вдвое, а его давление уменьшилось в 3 раза. Масса воздуха в сосуде уменьшилась в k раз. Найдите k.

5. Температура нагревателя идеального теплового двигателя Карно равна а температура холодильника равна Рабочее тело получает от нагревателя за один цикл количество теплоты 25 кДж. Какую работу совершает за цикл рабочее тело двигателя? Ответ укажите в килоджоулях с точностью до десятых.

6. Одноатомный идеальный газ в количестве молей поглощает количество теплоты 2 кДж. При этом температура газа повышается на 20 К. Работа, совершаемая газом в этом процессе, равна 1 кДж. Чему, приблизительно, равно число молей газа? Ответ округлите до целого числа.

7. В термос с большим количеством льда при температуре заливают 0,5 кг воды с температурой При установлении теплового равновесия в сосуде расплавится лед массой Найдите ответ укажите в килограммах с точностью до сотых.

8. КПД тепловой машины 30%. За 10 с рабочему телу машины поступает от нагревателя 3 кДж теплоты. Чему равна средняя полезная мощность машины? Ответ приведите в ваттах.

9. Идеальная тепловая машина работает по циклу Карно, совершая за один цикл работу 2 кДж. Количество теплоты 2 кДж рабочее тело двигателя отдает за один цикл холодильнику, температура которого 17 °С. Чему равна температура нагревателя? Ответ приведите в градусах Цельсия.

10. Идеальная тепловая машина работает по циклу Карно, совершая за один цикл работу 2 кДж. Количество теплоты 6 кДж рабочее тело двигателя получает за один цикл от нагревателя, температура которого 217 °С. Чему равна температура холодильника? Ответ приведите в градусах Цельсия, округлите до целых.

11. Идеальная тепловая машина работает по циклу Карно, получая за один цикл от нагревателя 5 кДж теплоты и отдавая холодильнику З кДж теплоты. Температура холодильника 17 °С. Чему равна температура нагревателя? Ответ приведите в градусах Цельсия, округлите до целых.

12. Железному и алюминиевому цилиндрам сообщили одинаковое количество теплоты, что привело к одинаковым изменениям температуры цилиндров. Воспользовавшись таблицами, приведёнными в начале варианта, определите примерное отношение масс этих цилиндров Ответ округлите до целых.

13. В кубическом метре воздуха в помещении при температуре 20 °С находится водяных паров. Пользуясь таблицей плотности насыщенных паров воды, определите относительную влажность воздуха. Ответ приведите в процентах, округлите до целых.

t, °С
1,36 1,45 1,54 1,63 1,73 1,83 1,94 2,06

14. У теплового двигателя, работающего по циклу Карно, температура нагревателя 500 К, а температура холодильника 300 К. Рабочее тело за один цикл получает от нагревателя количество теплоты, равное 40 кДж. Какую работу совершает за цикл рабочее тело двигателя? Ответ укажите в килоджоулях.

15. Два моля идеального газа находились в баллоне, где имеется клапан, выпускающий газ при давлении внутри баллона более При температуре 300 К давление в баллоне было равно Затем газ нагрели до температуры 600 К. Сколько газа при этом вышло из баллона? Ответ приведите в молях, округлите до десятых.

16. В кастрюлю с 2 л воды температурой 25 °С долили 3 л кипятка температурой 100 °С. Какова будет температура воды после установления теплового равновесия? Теплообмен с окружающей средой и теплоемкость кастрюли не учитывайте. Ответ приведите в градусах цельсия.

17. В теплоизолированный сосуд с большим количеством льда при температуре заливают воды с температурой Какая масса льда расплавится при установлении теплового равновесия в сосуде? Ответ приведите в килограммах.

18. В калориметр с водой бросают кусочки тающего льда. В некоторый момент кусочки льда перестают таять. К концу процесса масса воды увеличилась на 84 г. Какова начальная масса воды, если ее первоначальная температура 20 °С? Ответ приведите в килограммах.

19. В теплоизолированный сосуд с большим количеством льда при температуре заливают теплой воды. Какова была начальная температура воды, если при установлении теплового равновесия в сосуде расплавилось 560 г льда? Ответ приведите в градусах цельсия.

20. Идеальный газ изохорно нагревают так, что его температура изменяется на а давление — в 1,6 раза. Масса газа постоянна. Какова начальная температура газа по шкале Кельвина?

21. Идеальный газ изобарно нагревают так, что его температура изменяется на а объём — в 1,4 раза. Масса газа постоянна. Какова начальная температура газа по шкале Кельвина?

23. Для определения удельной теплоемкости вещества тело массой 450 г, нагретое до температуры 100 °С, опустили в калориметр, содержащий 200 г воды. Начальная температура калориметра с водой 23 °С. После установления теплового равновесия температура тела и воды стала равна 30 °С. Определите удельную теплоемкость вещества исследуемого тела. Теплоемкостью калориметра пренебречь. Ответ приведите в Дж/(кг · К) и округлите до целого.

24. На графике приведена зависимость КПД идеальной тепловой машины от температуры ее холодильника. Чему равна температура нагревателя этой тепловой машины? Ответ приведите в Кельвинах.

25. На графике приведена зависимость КПД идеальной тепловой машины от температуры её холодильника. Чему равна температура нагревателя этой тепловой машины? Ответ приведите в кельвинах.

26. На рисунке приведен график зависимости внутренней энергии порции идеального газа от температуры Газ нагревают при постоянном объеме. Чему равна теплоемкость этой порции данного газа в рассматриваемом процессе? Ответ приведите в Дж/К.

27. В закрытом цилиндрическом сосуде находится влажный воздух при температуре 100 °С. Для того, чтобы на стенках этого сосуда выпала роса, требуется изотермически изменить объем сосуда в 25 раз. Чему приблизительно равна первоначальная абсолютная влажность воздуха в сосуде? Ответ приведите в г/м3, округлите до целых.

28. Кусок льда, имеющий температуру 0 °С, помещён в калориметр с электронагревателем. Чтобы превратить этот лёд в воду с температурой 10 °С, требуется количество теплоты 200 кДж. Какая температура установится внутри калориметра, если лёд получит от нагревателя количество теплоты 120 кДж? Теплоёмкостью калориметра и теплообменом с внешней средой пренебречь. Ответ приведите в градусах Цельсия.

1) вода при температуре выше 0 °С 2) вода при температуре 0 °С

3) лёд при температуре 0 °С 4) смесь воды и льда при температуре 0 °С

30. Идеальный одноатомный газ изобарно расширили от объёма 1 л до объёма 3 л, затем изохорно охладили так, что его давление уменьшилось от 2 105 Па до 105 Па, после чего газ вернули в исходное состояние так, что его давление линейно возрастало при уменьшении объёма. Какую работу совершил газ в этом процессе? Ответ приведите в джоулях.

31. Идеальный одноатомный газ изобарно сжали от объёма 3 л до объёма 1 л, затем изохорно нагрели так, что его давление увеличилось от 105 Па до 2 105 Па, после чего газ вернули в исходное состояние так, что его давление линейно убывало при увеличении объёма. Какую работу совершил газ в этом процессе? Ответ приведите в джоулях.

32. Идеальная тепловая машина с температурой холодильника 300 К и температурой нагревателя 400 К за один цикл своей работы получает от нагревателя количество теплоты 10 Дж. За счёт совершаемой машиной работы груз массой 10 кг поднимается вверх с поверхности земли. На какую высоту над землёй поднимется этот груз через 100 циклов работы машины? Ответ приведите в метрах.

33. Идеальная тепловая машина с температурой холодильника 300 К и температурой нагревателя 500 К за один цикл своей работы получает от нагревателя количество теплоты 8 Дж. За счёт совершаемой машиной работы груз массой 16 кг втаскивается вверх по гладкой наклонной плоскости, стоящей на земле. На какую высоту над уровнем земли поднимется этот груз через 100 циклов работы машины? Ответ приведите в метрах.

34. Поршень может свободно без трения перемещаться вдоль стенок горизонтального цилиндрического сосуда. В объёме, ограниченном дном сосуда и поршнем, находится воздух (см. рисунок). Площадь поперечного сечения сосуда равна 25 см2, расстояние от дна сосуда до поршня равно 20 см, атмосферное давление 100 кПа, давление воздуха в сосуде равно атмосферному. Поршень медленно перемещают на 5 см вправо, при этом температура воздуха не меняется. Какую силу требуется приложить, чтобы удержать поршень в таком положении? Ответ приведите в ньютонах.

35. С идеальным газом происходит циклический процесс, диаграмма p–V которого представлена на рисунке. Наинизшая температура, достигаемая газом в этом процессе, составляет 300 К. Определите количество вещества этого газа. Ответ укажите в молях с точностью до двух знаков после запятой.

36. С идеальным газом в количестве 0,24 моля происходит циклический процесс, VT-диаграмма которого представлена на рисунке. Определите наименьшее давление газа в этом процессе. Ответ укажите в килопаскалях, округлите до целых.

37. С идеальным газом происходит циклический процесс, pT–диаграмма которого представлена на рисунке. Наименьший объём, который занимает газ в этом процессе, составляет 6 л. Определите количество вещества этого газа. Ответ укажите в молях с точностью до сотых.

38. Во время опыта абсолютная температура воздуха в сосуде под поршнем повысилась в 2 раза, и он перешёл из состояния 1 в состояние 2 (см. рисунок). Поршень прилегал к стенкам сосуда неплотно, и сквозь зазор между ним мог просачиваться воздух. Рассчитайте отношение числа молекул газа в сосуде в конце и начале опыта. Воздух считать идеальным газом.

39. Во время опыта абсолютная температура воздуха в сосуде понизилась в 2 раза, и он перешёл из состояния 1 в состояние 2 (см. рисунок). Кран у сосуда был закрыт неплотно, и сквозь него мог просачиваться воздух. Рассчитайте отношение числа молекул газа в сосуде в конце и начале опыта. (Ответ округлить до десятых.) Воздух считать идеальным газом.

40. В стакан калориметра налили 150 г воды. Начальная температура калориметра и воды 55 °С. В эту воду опустили кусок льда, имевшего температуру 0 °С. После того как наступило тепловое равновесие, температура воды в калориметре стала 5 °С. Определите массу льда. Теплоёмкостью калориметра пренебречь. Удельную теплоту плавления льда принять равной 3,3·105 Дж/кг. Ответ приведите в граммах и округлите до целого числа.

41. Тело массой 800 г, нагретое до температуры 100 °С, опустили в калориметр, содержащий 200 г воды. Начальная температура калориметра и воды равна 30 °С. После установления теплового равновесия температура тела и воды в калориметре 37 °С. Определите удельную теплоёмкость вещества исследуемого тела. Теплоёмкостью калориметра пренебречь. Ответ приведите в Дж/(кг · °С), округлите до целых.

42. При проведении эксперимента по измерению удельной теплоёмкости вещества металлический цилиндр массой 0,15 кг был вынут из кипящей воды и опущен в воду, имеющую температуру 20 °С. Масса холодной воды 0,1 кг. После установления теплового равновесия температура металла и воды стала равной 30 °С. Чему равна удельная теплоёмкость вещества, из которого сделан цилиндр? Теплоёмкостью калориметра пренебречь. Ответ приведите в Дж/(кг · °С).

43. На рисунке показан график изотермического сжатия газа при температуре 150 К. Какое количество газообразного вещества содержится в этом сосуде? Ответ приведите в молях, округлив до целого.

44. Для определения удельной теплоёмкости вещества тело массой 400 г, нагретое до температуры 100 °С, опустили в калориметр, содержащий 200 г воды. Начальная температура калориметра и воды 23 °С. После установления теплового равновесия температура тела и воды стала равной 30 °С. Определите удельную теплоёмкость вещества исследуемого тела. Теплоёмкостью калориметра пренебречь. Ответ приведите в Дж/(кг · С°).

45. На рисунке показан график изменения давления 32 моль газа при изохорном нагревании. Каков объём этого газа? Ответ приведите в м3 с точностью до десятых.

46. Во время опыта абсолютная температура воздуха в сосуде понизилась в 2 раза, и он перешёл из состояния 1 в состояние 2 (см. рисунок). Кран у сосуда был закрыт неплотно, и сквозь него мог просачиваться воздух. Рассчитайте отношение количества молекул газа в сосуде в конце и начале опыта. Воздух считать идеальным газом. (Ответ округлить до сотых.)

47. Вертикальный цилиндр закрыт горизонтально расположенным поршнем массой 1 кг и площадью 0,02 м2, который может свободно перемещаться. Под поршнем находится 0,1 моля идеального одноатомного газа при некоторой температуре Над поршнем находится воздух при нормальном атмосферном давлении. Сначала газу сообщили количество теплоты 3 Дж, потом закрепили поршень и охладили газ до начальной температуры При этом давление газа под поршнем стало равно атмосферному. Чему равна температура ? Ответ укажите в кельвинах с точностью до десяток.

48. Вертикальный цилиндр закрыт горизонтально расположенным поршнем массой 1 кг и площадью 0,02 м2, который может свободно перемещаться. Под поршнем находится 0,1 моль идеального одноатомного газа при некоторой температуре T0. Над поршнем находится воздух при нормальном атмосферном давлении. Сначала от газа отняли количество теплоты 100 Дж. Потом закрепили поршень и нагрели газ до начальной температуры T0. При этом давление газа под поршнем стало в 1,2 раза больше атмосферного. Чему равна температура T0? Ответ укажите в Кельвинах с точностью до целых.

49. В теплоизолированном сосуде под поршнем находится 1 моль гелия при температуре 450 К (обозначим это состояние системы номером 1). В сосуд через специальный патрубок с краном добавили еще 2 моля гелия при температуре 300 К, и дождались установления теплового равновесия. После этого, убрав теплоизоляцию, весь оказавшийся под поршнем газ медленно изобарически расширили, изменив его объём в 2 раза (обозначим это состояние системы номером 2). Во сколько раз увеличилась внутренняя энергия системы при переходе из состояния 1 в состояние 2? (Ответ округлить до десятых.)

50. Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 (см. рисунок)? Ответ укажите в джоулях с точностью до десятых.

51. Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 (см. рисунок). Ответ укажите в джоулях с точностью до десятых.

52. В закрытом сосуде находится 2 г водяного пара под давлением 50 кПа и при температуре 100 ºС. Не изменяя температуры, объём сосуда уменьшили в 4 раза. Найдите массу образовавшейся при этом воды. Ответ приведите в граммах.

53. В закрытом сосуде находится 6 г водяного пара под давлением 25 кПа и при температуре 100 °С. Не изменяя температуры, объём сосуда уменьшили в 8 раз. Найдите массу пара, оставшегося после этого в сосуде. Ответ приведите в граммах.

54. В сосуде под поршнем при температуре 100 ºС находится 2 г водяного пара и такое же количество воды. Не изменяя температуры, объём сосуда увеличили в 3 раза. Определите массу воды, перешедшей при этом в пар. Ответ приведите в граммах.

55. В сосуде под поршнем при температуре 100 °С находится 2 г водяного пара и такое же количество воды. Не изменяя температуры, объём сосуда увеличили в 3 раза. Определите массу пара в сосуде после изменения объёма. Ответ приведите в граммах.

56. В атмосферном воздухе содержатся кислород и азот. Среднеквадратичная скорость молекул кислорода равна 468 м/с. Чему равна среднеквадратичная скорость молекул азота? Ответ укажите в м/с с точностью до целых.

57. В атмосферном воздухе содержатся кислород и аргон. Среднеквадратичная скорость молекул кислорода равна 470 м/с. Чему равна среднеквадратичная скорость молекул аргона? Ответ укажите в м/с с точностью до целых.

Физика

Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.


Цикл работы теплового двигателя состоит из трех этапов:

1) нагреватель передает газу количество теплоты Q 1 ;

2) газ, расширяясь, совершает работу A ;

3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .

Из первого закона термодинамики для циклического процесса

где Q — количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 — количество теплоты, переданное газу от нагревателя; Q 2 — количество теплоты, отданное газом холодильнику.

Поэтому для идеальной тепловой машины справедливо равенство

Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии

где Q 1 — теплота, переданная от нагревателя рабочему телу (газу); A — работа, совершенная газом; Q 2 — теплота, переданная газом холодильнику.

Коэффициент полезного действия тепловой машины вычисляется по одной из формул:

η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = ( 1 − Q 2 Q 1 ) ⋅ 100 % ,

где A — работа, совершенная газом; Q 1 — теплота, переданная от нагревателя рабочему телу (газу); Q 2 — теплота, переданная газом холодильнику.

Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.

Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.


Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу ( A 12 > 0), его внутренняя энергия не изменяется (∆ U 12 = 0).

Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆ U 23 = − A 23 , газ охлаждается до температуры холодильника T 2 .

Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу ( A 34 < 0), его внутренняя энергия не изменяется (∆ U 34 = 0).

Участок 4–1 соответствует адиабатному сжатию газа. При этом теплообмена с внешней средой не происходит, совершаемая отрицательная работа A 41 приводит к увеличению внутренней энергии газа: ∆ U 41 = − A 41 , газ нагревается до температуры нагревателя T 1 , т.е. возвращается в исходное состояние.

Коэффициент полезного действия тепловой машины, работающей по циклу Карно, вычисляется по одной из формул:

η = T 1 − T 2 T 1 ⋅ 100 % , η = ( 1 − T 2 T 1 ) ⋅ 100 % ,

где T 1 — температура нагревателя; T 2 — температура холодильника.

Пример 9. Идеальная тепловая машина совершает за цикл работу 400 Дж. Какое количество теплоты передается при этом холодильнику, если коэффициент полезного действия машины равен 40 %?

Решение . Коэффициент полезного действия тепловой машины определяется формулой

где A — работа, совершаемая газом за цикл; Q 1 — количество теплоты, которое передается от нагревателя рабочему телу (газу).

Искомой величиной является количество теплоты Q 2 , переданное от рабочего тела (газа) холодильнику, не входящее в записанную формулу.

Связь между работой A , теплотой Q 1 , переданной от нагревателя газу, и искомой величиной Q 2 устанавливается с помощью закона сохранения энергии для идеальной тепловой машины

Уравнения образуют систему

η = A Q 1 ⋅ 100 % , Q 1 = A + Q 2 , >

которую необходимо решить относительно Q 2 .

Для этого исключим из системы Q 1 , выразив из каждого уравнения

Q 1 = A η ⋅ 100 % , Q 1 = A + Q 2 >

и записав равенство правых частей полученных выражений:

A η ⋅ 100 % = A + Q 2 .

Искомая величина определяется равенством

Q 2 = A η ⋅ 100 % − A = A ( 100 % η − 1 ) .

Расчет дает значение:

Q 2 = 400 ⋅ ( 100 % 40 % − 1 ) = 600 Дж.

Количество теплоты, переданной за цикл от газа холодильнику идеальной тепловой машины, составляет 600 Дж.

Пример 10. В идеальной тепловой машине от нагревателя к газу поступает 122 кДж/мин, а от газа холодильнику передается 30,5 кДж/мин. Вычислить коэффициент полезного действия данной идеальной тепловой машины.

Решение . Для расчета коэффициента полезного действия воспользуемся формулой

η = ( 1 − Q 2 Q 1 ) ⋅ 100 % ,

где Q 2 — количество теплоты, которое передается за цикл от газа холодильнику; Q 1 — количество теплоты, которое передается за цикл от нагревателя рабочему телу (газу).

Преобразуем формулу, выполнив деление числителя и знаменателя дроби на время t :

η = ( 1 − Q 2 / t Q 1 / t ) ⋅ 100 % ,

где Q 2 / t — скорость передачи теплоты от газа холодильнику (количество теплоты, которое передается газом холодильнику в секунду); Q 1 / t — скорость передачи теплоты от нагревателя рабочему телу (количество теплоты, которое передается от нагревателя газу в секунду).

В условии задачи скорость передачи теплоты задана в джоулях в минуту; переведем ее в джоули в секунду:

  • от нагревателя газу —

Q 1 t = 122 кДж/мин = 122 ⋅ 10 3 60 Дж/с ;

  • от газа холодильнику —

Q 2 t = 30,5 кДж/мин = 30,5 ⋅ 10 3 60 Дж/с .

Рассчитаем коэффициент полезного действия данной идеальной тепловой машины:

η = ( 1 − 30,5 ⋅ 10 3 60 ⋅ 60 122 ⋅ 10 3 ) ⋅ 100 % = 75 % .

Пример 11. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, равен 25 %. Во сколько раз увеличится коэффициент полезного действия, если температуру нагревателя увеличить, а температуру холодильника уменьшить на 20 %?

Решение . Коэффициент полезного действия идеальной тепловой машины, работающей по циклу Карно, определяется следующими формулами:

  • до изменения температур нагревателя и холодильника —

η 1 = ( 1 − T 2 T 1 ) ⋅ 100 % ,

где T 1 — первоначальная температура нагревателя; T 2 — первоначальная температура холодильника;

  • после изменения температур нагревателя и холодильника —

η 2 = ( 1 − T ′ 2 T ′ 1 ) ⋅ 100 % ,

где T ′ 1 — новая температура нагревателя, T ′ 1 = 1,2 T 1 ; T ′ 2 — новая температура холодильника, T ′ 2 = 0,8 T 2 .

Уравнения для коэффициентов полезного действия образуют систему

η 1 = ( 1 − T 2 T 1 ) ⋅ 100 % , η 2 = ( 1 − 0,8 T 2 1,2 T 1 ) ⋅ 100 % , >

которую необходимо решить относительно η 2 .

Из первого уравнения системы с учетом значения η 1 = 25 % найдем отношение температур

T 2 T 1 = 1 − η 1 100 % = 1 − 25 % 100 % = 0,75

и подставим во второе уравнение

η 2 = ( 1 − 0,8 1,2 ⋅ 0,75 ) ⋅ 100 % = 50 % .

Искомое отношение коэффициентов полезного действия равно:

η 2 η 1 = 50 % 25 % = 2,0 .

Следовательно, указанное изменение температур нагревателя и холодильника тепловой машины приведет к увеличению коэффициента полезного действия в 2 раза.

Читайте также: