Ep6 bmw на какие машины ставились

Добавил пользователь Валентин П.
Обновлено: 04.10.2024

Моторы PSA и BMW серии EP 6. Принц не получит корону.

В начале нулевых PSA (Peugeot Citroën Automobiles) понадобился новый мотор на замену устаревшей серии TU. Почти в это же время компания BMW начала искать варианты замены моторов для MINI (входит к концерн BMW), которые ставились чуть ли не от марки Rover, а так же им нужен был современный двигатель для своих младших моделей.

Собравшись на встречу, французы вместо бизнес-плана взяли коньяка, от которого баварцев так унесло, что они сказали: "Ладно, мы сами все сделаем! А с вас завод для сборки моторов! " На том и разошлись. Каждый нашел в сделке выгоду. PSA теперь могут заявлять что у них моторы от BMW, а BMW получила сборочное производство и обкатку нового двигателя на Пежо и Ситроенах.

Немцы выложились на полную. Новое семейство моторов получило самые передовые решения на тот момент. Совместное детище получило маркетинговое имя Prince, одно только название говорит об амбициях при разработке новых моторов. И моторы получились прекрасные по характеристикам, экономичные и экологичные.

Конкурс "Двигатель года" это тема для отдельной статьи, но если изложить суть конкурса, то это конкурс за самый высокий КПД, самый чистый выхлоп и самый низкий расход топлива среди однообъемников. Ресурс и надежность там не принято оценивать.

В 2005 эти моторы поступают в продажу на Пежо и Ситроенах, в 2006-м на MINI, и только с 2011 года этот двигатель в турбоверсии появляется на BMW.

Особенности конструкци и

Как говорится, нет предела совершенству. К 2009-му году на конвейер поступила третья. версия блока цилиндров, с измененными масляными каналами.

Сами двигатели: всего два варианта рабочего объема на 1,4 и 1,6 литра. Количество цилиндров 4. Разброс по мощности от 89 л.с. до 270 л.с. на PEUGEOT 308 GTi и RCZ. Масштабирование по мощности двигателя отлично обеспечивал турбонаддув. Мотор был оптимизирован для использования TwinScroll-турбин, которая дала отличные показатели во всех вариантах форсирования.

Применение бездроссельного регулирования Valvetronic (разработка BMW) повышало КПД двигателя и снижало расход топлива. Привод ГРМ - цепь. Регулировка фаз ГРМ на одном или двух распредвалах с применением технологии VANOS. Маслонасос с изменяемой производтельностью, система охлаждения с дополнительной электрической помпой. Для турбомоторов был подготовлен прямой впрыск топлива в цилиндры, пьезофорсунки, жидкостный интеркулер, и встроенный вакуумный насос на всех вариантах.

Самое крупное обновление этого семейства моторов произошло в 2011 году. Обновленные моторы получили индекс EP6C.

Будущее Принца.

Компания BMW поддерживала разработку до 2015 года, когда двигатель прекратили устанавливать на машины BMW. Концерн PSA занимается модернизацией до сих пор, и продвигает производство этого мотора в Китае, для компаний Brilliance, Changan и Donfeng. Получив такой двигатель, китайцы наверняка сделают его еще надежней и Принц, наконец-то, сможет стать королем Поднебесной.

Все реальные (и надуманные) проблемы мотора Peugeot-Citroen

Соплатформенные Citroen C4 первого поколения и Peugeot 307, которые появились в 2004 году, оказались очень удачными машинами и отлично продавались в России. Во многом — благодаря неприхотливым моторам. Но с рестайлингом 2008 года в гамме появился передовой по тем временам двигатель EP6, разработанный совместно с BMW.

Двигатель EP6 — восьмикратный победитель (с 2007 по 2014 год) международного конкурса International Engine Of The Year Awards в номинации «1,4–1,8 литра». Высокотехнологичность мотора заключалась в непосредственном впрыске, системе бездроссельного регулирования Valvetronic от BMW и использовании Twin-Scroll-турбин с одной улиткой и двумя разноразмерными крыльчатками. Всё это обес­печило высоченный КПД и экономичность. На новых BMW и Mini этот мотор уже не увидишь, а вот покупателям автомобилей Citroen, Peugeot или Opel Grandland X он может встретиться.

На вторичном рынке распространены турбоверсии THP (150 и 156 л.с.), а также атмосферный VTi (120 л.с.).

На волне доверия к французским маркам многие впоследствии пересели на Peugeot 308 и Citroen C4 второй генерации, в моторной линейке которых уже главенствовал EP6. И он подпортил репутацию французского концерна, так как имел массу конструктивных недостатков, часто приводивших к серьезным поломкам и дорогостоящему ремонту. Не в восторге от мотора были и владельцы автомобилей других марок, на которые он устанавливался, в том числе BMW первой серии (116i, 118i), Mini One/Cooper и других.

Первые версии мотора EP6 вживую уже сложно встретить, поэтому поговорим о периоде с 2011 года — тогда двигатель существенно модернизировали, заточив под эконормы Евро‑5. Но надежнее он при этом не стал. Родовых болячек две: образование нагара на клапанах и растяжение цепи ГРМ.

По принципу русской печки

Нагар возникал преимущественно из-за несоответствия фаз газораспределения, основной причиной которого и было растяжение цепи ГРМ. Растяжение приводило к смещению угла впускного распредвала и, как следствие, обратному выбросу продуктов горения во «впуск». В итоге впускные клапаны обрастали нагаром. При этом росла температура самих клапанов, что только усугубляло ситуацию.

Любой мотор с непосредственным впрыском по принципу работы напоминает русскую печку: горит внизу, а чистить приходится наверху — трубу. Так и с EP6. Форсунка льет топливо непосредственно в камеру сгорания, минуя клапаны (в отличие от впрыска других типов). Именно поэтому очистка клапанов моющими присадками неэффективна — ничего, кроме топливоподающей трубы, ими очистить не получится.

Очистка клапанов производится с полным демонтажом головки блока (хотя возможен вариант и без ее снятия, если конфигурация моторного отсека позволяет). При этом снимают впускной трубопровод и выпускной коллектор. Затем специальной жидкостью с гранулами при помощи пневмопистолета и пистолета, подающего эту жидкость, удаляют нагар. Такой способ очистки допускает производитель. При этом сервисмены (и официальные, и те, что обслуживают постгарантийные машины с большим пробегом) сходятся во мнении о том, что единственный достаточно эффективный способ избавиться от нагара — демонтаж головки и механическая чистка. Надо ли говорить, что такая процедура не из дешевых?

Впрочем, всё это борьба со следствием. А каковы причины?

На моторном заводе в Дуврене, что на севере Франции, начали решать проблему образования нагара с изменения технологического процесса сборки. С 2012 года коленвал стали устанавливать с расчетом на начальное растяжение цепи ГРМ, которое происходит на первых 8000–10 000 км. После этого пробега коленвал занимал условно правильное положение.

Кроме того, начиная с серий EP6 CDT M и EP6 CDT MD (это версии мотора под Евро‑5, созданные в 2013 году для рынков со сложными условиями эксплуатации, включая Россию) мотор дефорсировали (среди прочего изменили степень сжатия с 10,5 до 9,5), снизив мощность до 150 л.с., и подкорректировали углы опережения зажигания. Это дало положительный эффект при работе на некачественном бензине.

В российском представительстве Citroen уверяют, что проблема нагара на клапанах у моторов EP6 FDT современной линейки, соответствующих эконормам Евро‑6, полностью решена: с 2016 года в гарантийный период ни разу не приходилось чистить клапаны.

МНЕНИE ЭКСПЕРТА

У моторов EP6 надежная поршневая группа, поэтому без капитального ремонта (то есть без вмешательства в поршневую), но с регулярными ревизиями ГБЦ такие двигатели способны отработать до 500 000 км.

И такие машины у нас обслуживаются. Причем как с турбомоторами, так и с атмосферниками. Но обычно терпение у владельцев заканчивается раньше, и они продают автомобиль.

Атмосферную версию EP6 я назвал бы более надежной, несмотря на то что у нее есть свои проблемы. Парадокс EP6: чем чаще и дольше вы его эксплуатируете, тем дольше он служит, а если поездки редкие и короткие, то вероятность возникновения неисправностей возрастает.

Первые двигатели EP6 оказались конструктивно сырыми и неприспособленными к нашим условиям эксплуатации. А вот обращений владельцев машин с новым мотором (Евро‑6) пока было мало, причем всё сводилось к обычным работам в рамках ТО.

Сколько можно тянуть?

Почему бы не заменить однорядную цепь привода ГРМ более прочной двухрядной? Это можно было сделать давным-давно и тем самым решить проблему. Или отсрочить ее проявления?

По статистике, цепь ГРМ на турбомоторах EP6, выпущенных до 2016 года, редко дохаживает до 100 000 км. Первые признаки растяжения появляются обычно при пробегах около 60 000 км. Официальная версия такова: крутящий момент на коленвалу большой, при этом на впускном распредвалу установлен ТНВД, а выпускной «нагружен» вакуумным насосом; при резких ускорениях на цепь приходится высокая нагрузка, из-за чего она и растягивается. Вывод: налицо конструктивный просчет.

Кроме того, при значительном вытягивании цепи в приводе ГРМ возникали демпферные удары. Они передавались на ТНВД, имеющий механический привод от впускного распредвала, и выводили его из строя.

Избавиться от проблем привода ГРМ помог комплекс мер. Во‑первых, цепь ГРМ модернизировали семь раз. В каждом случае производитель старался упрочнить ее конструкцию (в первую очередь — оси, соединяющие звенья). Инженеры меняли как материалы элементов, так и процесс термообработки.

Во‑вторых, скорректировали форму верхнего успокоителя, расположенного между шестернями распредвалов. Раньше кронштейн успокоителя изготавливали из алюминия, а потому при серьезном растяжении цепи его выламывало. Теперь он стальной, более прочный. Кроме того, изменили конструкцию ТНВД. Предыдущий насос был двухплунжерный, с приводом от качающейся шайбы (по принципу работы напоминает компрессор кондиционера), сейчас применен одноплунжерный насос с приводом от кулачка, как на дизельных двигателях. Такие топливные насосы куда надежнее.

Большинство случаев гарантийного ремонта в последнее время было связано не столько с растяжением цепи, сколько с ее шумом при пуске. Причина коренилась в гидравлическом натяжителе цепи. При длительной стоянке автомобиля из него уходило масло, и первое время сразу после пуска двигателя натяжение было недостаточным. Натяжитель модернизировали, и неисправность осталась в прошлом. Все эти доработки перенесли и на моторы под Евро‑6.

Куда уходит масло?

Известны случаи, когда владельцы в межсервисный интервал (сейчас по регламенту масло меняют каждые 10 000 км) подливали больше, чем вмещает масляная система двигателя. Обычно причиной проблем становится клапанная крышка, где расположен клапан вентиляции картерных газов. Если он неисправен (например, забит масляными отложениями), в двигателе возникает избыточное давление, и первое, что продавливается, - прокладка клапанной крышки и сальники коленвала. Через них подтекает масло. Замена клапана производителем не предусмотрена, он предписывает только замену клапанной крышки в сборе. Сэкономить помогут ремкомплекты для клапанных крышек атмосферных версий — они есть в продаже.

Часто возникали течи масла (отпотевания) через крышку головки — со стороны ГРМ. Обращения по поводу этого дефекта прекратились с рестайлингом 2017 года, когда крышку модернизировали. Случалась и течь масла через уплотнитель кронштейна масляного фильтра. Неисправность устранили, заменив материал прокладки в 2015 году. С тех пор этот дефект исчез из гарантийной статистики. А еще подтекала трубка подачи масла на турбокомпрессор. Трубку модернизировали в 2016 году — изменили технологию завальцовки штуцеров. Для снижения вероятности коксования масла в трубке (она расположена близко к выпуску) ее оснастили термоизоляцией и дополнительным термоэкраном штуцера.

При отсутствии внешних течей у повышенного расхода масла может быть две причины. Первая — масло­съемные колпачки. Последний раз их модернизировали в конце 2016 года: применили более эластичный материал. Колпачки прежней конструкции при холодном пуске могли пропускать масло до тех пор, пока двигатель не прогреется.

Вторая причина кроется в конструкции поршневой группы. Она тоже значительно изменилась при переходе на Евро‑6. В частности, разработчики подобрали иной материал для второго компрессионного кольца.

Каков же нормальный расход масла? Вопрос сложный, ведь расход сильно зависит от состояния двигателя, пробега, качества обслуживания, состава масла и манеры вождения. Многие производители придерживаются нормы 2 л/10 000 км. Если приходится лить больше, имеет смысл съездить на диагностику.

МНЕНИЕ ЭКСПЕРТА

— Мы определяем ликвидность каждой модели и ее модификации, опираясь на продолжительность продажи по рекомендованной рыночной цене. Такой подход позволяет избавиться от устойчивых стереотипов, не соответствующих реальным рыночным условиям. EP6 устанавливали на разные по идеологии автомобили, и его влияние на конечную ликвидность конкретной модели минимально. Например, ликвидность Peugeot 308 с этим мотором мы оцениваем как среднюю, а Mini Cooper — как низкую.

Мы формируем ассортимент, исходя из спроса на рынке, и предлагаем не просто проверенные машины с пробегом, но и наиболее беспроблемные с точки зрения дальнейшей эксплуатации. В случае с турбированной модификацией EP6 на автомобилях Peugeot и Citroen стереотип и мнение рынка сходятся: доля 150‑сильных машин — около 10%. Поэтому сейчас таких у нас в продаже нет. А вот покупатели BMW или Mini меньше обращают внимание на наличие этого мотора.

Другие проблемы

Прочие неисправности возникали по большей части из-за проблем с качеством у поставщиков. К примеру, «трещал» клапан сброса избыточного давления турбонаддува, подтекал температурный датчик термостата. Оба дефекта устранили в 2013 году: поставщики улучшили качество продукции. Насос системы охлаждения перестал быть проблемным в 2014 году, когда его корпус стал алюминиевым.

А еще старые модификации мотора для Европы (EP6DT) из соображений экономии лишили масляного теплообменника. Они были очень термонагружены и часто «звенели», то есть страдали детонацией (ошибка P1385), - в итоге это приводило к потере мощности. Конструкцию изменили в 2013 году и даже провели отзывную кампанию. У мотора EP6 современной линейки теплообменник установлен на кронштейне масляного фильтра.

Производитель уверяет, что устранил бóльшую часть детских болезней мотора EP6 в процессе его доработки под эконормы Евро‑6. Обращения владельцев в гарантийный период существенно сократились. А что после гарантии? Статистики, позволяющей делать какие-либо выводы, пока недостаточно, но, судя по немногим машинам, отмахавшим больше 100 000 км, надежность двигателя действительно выросла.

Можно ли приобретать машину с мотором EP6 с турбонаддувом? Новую — пожалуй, да. С пробегом — при условии должного технического обслуживания и повышенного внимания к системе привода ГРМ. И обязательно сделайте перед покупкой диагностику в официальном или специализированном сервисе. Только там знают все особенности капризного Принца. В случае ремонта неисправные узлы и детали будут заменять новыми, модернизированной конструкции, и это большой плюс. Но главное, что траты на ремонт в большинстве случаев вполне приемлемые. Не зря же в клубные сервисы Peugeot-Citroen обращаются владельцы автомобилей Mini и BMW: запчасти такие же, а ремонт в итоге обходится в полтора-два раза дешевле.

НАШ ОПЫТ

На моем Peugeot 3008 2011 года с 156‑сильной версией этого мотора (Евро‑5) сигнал о растяжении цепи появился на пробеге 72 000 км. А редакционному Ситроену C4 2013 года выпуска (калужская сборка) уже дважды меняли цепь, хотя пробег немногим более 100 000 км. Так что обычная замена растянутой цепи ее модернизированной версией не гарантирует того, что проблема не повторится, причем совсем скоро. В идеале вместе с заменой цепи ГРМ нужно провести ревизию головки блока цилиндров с механической очисткой от нагара и заменой ­изношенных элементов.

Это самая новая модель на рынке, оснащенная мотором EP6 THP (150 л.с.). Фантастика! Путь 1000 км проделан со средним расходом 7,8 л/100 км. И это не фантазии бортового компьютера (он показывал даже меньше), а реальный расход — по чекам АЗС. Причем при почти полной загрузке и регулярных обгонах на трассе! По экономичности и своим динамическим возможностям EP6 можно поставить в один ряд с маздовским мотором Skyactiv. Правда, за японским двигателем не тянется столь длинный шлейф детских болезней.

Двигатель Peugeot EP6

Силовой агрегат EP6 под капотом Пежо 308.

1.6-литровый двигатель Пежо EP6 или 5FW собирался на заводе компании с 2006 по 2013 год и устанавливался на многие популярные модели концерна своего времени такие как 207 или 308. С 2010 года производится Евро 5 модификация этого мотора под собственным индексом EP6C.

Технические характеристики двигателя Peugeot EP6 1.6 VTI 120

Типрядный
Кол-во цилиндров4
Кол-во клапанов16
Точный объем1598 см³
Диаметр цилиндра77 мм
Ход поршня85.8 мм
Система питанияинжектор
Мощность120 л.с.
Крутящий момент160 Нм
Степень сжатия11.0
Тип топливаАИ-95
Экологические нормыЕВРО 4
Типрядный
Кол-во цилиндров4
Кол-во клапанов16
Точный объем1598 см³
Диаметр цилиндра77 мм
Ход поршня85.8 мм
Система питанияинжектор
Мощность114 л.с.
Крутящий момент160 Нм
Степень сжатия11.0
Тип топливаАИ-95
Экологические нормыЕВРО 4

Описание устройства мотора EP6 1.6 VTI 16v

В 2006 году дебютировал кабриолет Peugeot 207 CC с 1.6-литровым мотором семейства Prince, который был создан инженерами BMW и PSA. Такой же двигатель ставили на Mini как N12B16A. Конструкция мотора вполне прогрессивна для своего времени: алюминиевый блок цилиндров, алюминиевая 16-клапанная головка, оснащенная гидрокомпенсаторами и цепной привод ГРМ, фазорегуляторы типа Vanos на двух валах, система бездроссельного регулирования Valvetronic. Еще эти агрегаты получили регулируемый маслонасос, а также дополнительную электропомпу.

Двигатель EP6 фото.

Мотор Peugeot EP6 вид сзади.

Данный атмосферный силовой агрегат оснащался только распределенным впрыском топлива, однако в линейке имелись и разные по степени форсировки турбомоторы с прямым впрыском.

Мануал для Пежо 308
MANUAL

Мануал для Пежо 308 с этим мотором вы можете найти тут

Форум о моторе EP3
FORUM

Мотор ЕP6 (Prince) – почему его считают неудачным?

Двигатель EP6

Двигатель EP6

История и конструкция

Немного неожиданное сотрудничество PSA и BMW возникло не на пустом месте. К середине «нулевых» французам потребовалось обновить линейку моторов, потому как их прошлые двигатели семейства TU выглядели уже не очень конкурентоспособно. У BMW тоже была проблема – что ставить под капот дружественного бренда Mini, да и разработка переднеприводных машин, для которых нужны другие моторы, тоже уже планировалась. В итоге, два участника альянса нашли друг друга. Кто что делал – доподлинно неизвестно. Говорят, что почти все инженерные работы на «совести» BMW, но до конца это неизвестно.

Результатом проектной работы стал не один мотор, а целое семейство, с разбросом мощностей от 90 до 270 л.с. Удивительно, но все это было сделано на одном алюминиевом блоке. Два варианта объема 1,4 и 1,6 достигались за счет разного хода поршней, а увеличение мощности – за счет различные турбин и настроек давления.

Конструкция у мотора передовая – тут ничего не скажешь. Система фазовращателей (в зависимости от модификаций 1 или 2), бездроссельный впуск Valvetronic, электронно управляемый термостат, непосредственный впрыск на турбированных версиях, вакуумный насос, ТНВД, жидкостный интеркулер и прочее-прочее. Показатели по мощности, экономичности и экологичности были очень крутыми. Казалось, что у моторов светлое будущее. Но получилось иначе.

С 2005 года двигатели стали массово устанавливаться на Citroen и Peugeot, чуть позже добавилось и Mini. В 2011 году на переднеприводные модели пробовала ставить эти двигатели и BMW. Сегодня концерн BMW отказался от использования моторов, а вот PSA, попробовав устранить недостатки, до сих пор их устанавливает, в том числе и на модели марки Opel.

Под капотом Mini мотор EP6

Под капотом Mini мотор EP6

Несмотря на большое количество модификаций, в России больше всего было проблем с турбомотором мощностью 150 л.с. Он появился в 2008 году после рестайлинга Citroen C4 и Peugeot 307 и был вершиной моторной линейки для этих автомобилей. Россияне, привыкшие к не очень мощным, но неубиваемым моторам серии TU, охотно покупали мощную новинку, которую, тем более, проектировала BMW, рассчитывая получить мотор мечты. Мечты оказались разбиты вдребезги.

1.6 THP EP6

1.6 THP EP6

Проблемы

Трудности с мотором начинались еще в гарантийный период. На моделях, оснащенных наддувом, цепь в приводе ГРМ начинала растягиваться уже к 40 тысячам километров. Менее нагруженные атмосферники выдерживали больше, но все равно редко кто с родной цепью доезжал до 100 тысяч километров.

Растянутая цепь ГРМ 1.6 EP6

Растянутая цепь ГРМ 1.6 EP6

Растянутая цепь — это не только грохот при работе, но и ряд реальных проблем при эксплуатации. Во-первых, смещаются фазы газораспределения. Это чревато многими проблемами, но больше всего вреда несут на себе клапана, которые быстро покрываются огромной шубой из нагара. Лечится это только разборкой и механической чисткой (недешевая, как понимаете, процедура). Промывать присадками бесполезно, потому что впрыск непосредственный, и топливо подается в цилиндры минуя клапана.

Во-вторых, растянутая цепь негативно сказывается на вакуумном насосе, у которого механический привод. Тут, кстати, нужно вообще сказать, что это за насос и зачем он потребовался. Бездроссельная система поднятия клапанов Valvetronic имеет особенность – она не создает во впускном коллекторе достаточного разряжения, поэтому приходится ставить дополнительный агрегат. А то и усилитель тормозов запитать не от чего. Но это красноречивый пример, когда дополнительная запчасть – дополнительные проблемы. Из-за растягивания цепи насос начинает подклинивать, что пагубно сказывается на распредвалах.

Вакуумный насос EP6

Вакуумный насос EP6

Почему цепь растягивается? Это явный конструктивный просчет. И цепь простенькая, однорядная, и натяжитель очень слабый, и отсутствие каких-либо механизмов компенсации растяжения. Все один к одному. Самое смешное, что перескоки цепи и встреча клапанов с поршнями на этих моторах случается очень редко. Но это исключительно потому, что эксплуатировать машину с растянутой цепью очень трудно, владельцы ехали в сервис еще до того, как цепь растягивалась настолько чтобы перескочить.

Но цепь это только первая проблема этих моторов, вторая – система смазки. Тут производители «накосячили» сразу двумя способами. Во-первых, у мотора была явная проблема с вентиляцией картерных газов. Система встроена в клапанную крышку и, если что, меняется только в сборе с крышкой, что до сих пор очень расстраивает владельцев (на атмосферниках поменять крышку и мембрану можно отдельно).

Клапан вентиляции картерных газов атмосферного мотора EP6

Клапан вентиляции картерных газов атмосферного мотора EP6

Во-вторых, в конце нулевых для этих моторов был установлен интервал замены масла в 20 000 километров. Это уже потом, экспериментальным путем, было установлено, что при интервале в 7 500 километров мотор еще более-менее ходит, а ТО через 20 000 километров для него смерть. Изменение химического состава масла из-за его старения крайне негативно влияет на внутренности мотора. Коксуются поршневые кольца, дубеют маслосъемные колпачки, постоянно течет масло из-за под клапанной крышки, сальников и вакуумного насоса. Из-за забитых масляных магистралей смазка в скором времени перестает подаваться к системе Valvetronic и фазовращателям, которые довольно быстро от этого умирают. Ну и, конечно, масложор. Даже атмосферник легко потребляет литр на 1000 километров еще будучи относительно новым, а у турбированного агрегата расход и того выше. На пробегах за 100 тысяч километров снабжение маслом могло быть уже настолько плохо, что начинают появляться задиры на вкладышах, металлическая стружка расходится по всему мотору, приговаривая его еще быстрее.

Замена маслосъемных колпачков EP6

Замена маслосъемных колпачков EP6

Но и на этом конструктивные проблемы не заканчиваются. С системой охлаждения все тоже непросто. Двигатель очень горячий – конструктивно термостат открывается на 105 градусах, на 108 включается вентилятор на первую скорость. Запаса никакого, чуть что и мотор сразу перегревается. Учитывая постоянные отказы датчика температуры в помпе, это случается достаточно часто. Ну, а перегрев обычно окончательно добивает уже и так «подраненный» мотор.

Термостат двигателя EP6

Термостат двигателя EP6

Интересно, что по железу двигатель оказался неплох. Цилиндров-поршневая группа имеет весьма приличный ресурс, не менее 300 тысяч километров. Однако редко кто доезжает до такого пробега – мотор постоянными поломками так изматывает владельца, что от машины предпочитают избавиться много раньше.

Доработки и нынешнее положение дел

Естественно, в PSA быстро поняли, что мотор получился очень «сырым», поэтому почти все время выпуска его так или иначе дорабатывали. Самая большая модернизация произошла в 2011 году, двигатель после нее начал называться EP6C. Появилась новая цепь, новый натяжитель, модернизировали распредвалы, масляные каналы увеличили в диаметре, заменили ТНВД и вакуумный насос на другие (иной конструкции), маслонасос получил электронное управление и обратный клапан, которые призваны смягчить скачки давления в масляном тракте, система вентиляции картера получила обогрев, поршни – новые кольца, которые менее склонны к закоксовке, заменили термостат и еще много чего сделали по мелочи.

Стало лучше? В целом да, однако полностью проблемы мотора это не исправило, просто они начали проявляться позже чем до модернизации. Цепь уже может пройти 100 000 километров, расход масла и его течь начинаются на больших пробегах. Дольше ходят ТНВД и вакуумный насос, гораздо реже встречаются задиры из-за масляного голодания. Последнему помог и более разумный интервал замены масла – 10 000 километров, но двигатели семейства все равно по надежности даже близко не приблизились к старым TU. Тем более, что во время модернизации инженеры применили два весьма сомнительных решения.

Во-первых, помпа теперь получила электромагнитный привод, который призван ускорить прогрев. На холодную помпа не работает, двигатель быстро прогревается, после чего уже включается циркуляция жидкости. Казалось бы, благо, вот только из-за резкого перепада температуры, когда циркулировать начинает уже горячая жидкость, мотор обрел две новые проблемы – трещины ГБЦ и пробой прокладки ГБЦ.

Масляные подтеки EP6

Масляные подтеки EP6

Во-вторых, клапан масляного насоса. Он вроде бы позволяет улучшить смазку ГБЦ, вот только за несколько лет перетянул на себя звание самого «текущего» элемента этого двигателя. Расход масла практически не снизился, и никак не была решена проблема нагара на клапанах. Потом двигатель еще много раз модернизировался, но его принципиальная конструкция осталась прежней, и полностью избавиться от проблем не удалось.

Что хорошо в EP6 и его модернизациях, так это то, что новые запчасти полностью совместимы со старыми. Это вам не группа VAG, у которой доработки не совместимы со старыми моторами. Тут даже на Prince первых годов выпуска можно поставить и цепь новую, и натяжитель, и помпу, и много чего еще. Это делает ремонт немного менее бессмысленным.

Как мы уже писали выше, BMW отказались от этих моторов еще в 2015 году, PSA тянет лямку до сих пор. Почти все модели компании имеют вариант с 1,6 турбо. Атмосферные Prince почти не используются, потому что оказалось, что модернизированный TU ничуть не хуже, но он максимум 115 л.с., без более мощных моторов французам сложно конкурировать, а других разработок нет. Более того сегодня Prince устанавливается и новые Opel, например, Grandland X. А еще французы начали активно продавать документацию на этот мотор китайцам, так что, думается, на покой этот агрегат отправится нескоро.

Opel Grandland X с турбомотором 1.6 EP6F

Opel Grandland X с турбомотором 1.6 EP6F

Брать или не брать

Самый главный вопрос этой статьи – стоит ли покупать машины с мотором EP6. Если говорить про новые, то, наверно, можно. Все-таки многие проблемы исправили, к тому же гарантия есть, но будьте готовы, что дисконт при продаже придется предложить приличный. Тут, скорее, проблема в том, что по соотношению цена/качество нынешние французские автомобили не очень конкурентоспособны. Купить новый Citroen, Peugeot или Opel можно только из-за желания выделяться и быть не таким как все. В противном случае за эти деньги можно подыскать более выгодный вариант.

На вторичке с EP6 есть много предложений вроде бы заманчивых по цене, но мы бы советовали обходить эти машины стороной. Скорее всего, причина продажи именно проблемы с мотором. Как за Prince не ухаживай, как не сокращай интервал замены масла, все равно постоянно с ним придется что-то делать. Да хотя бы менять быстро растягивающуюся цепь. Если уж и хотите что-то французское, то ищите с дизелем. Двухлитровый дизелек у PSA прекрасен, а проблемный Prince лучше даже и не рассматривать.

Peugeot-Citroen Club Belarus


Мы уже говорили ранее о том, что начиная с моделей Пежо 207 и Ситроен С4 на автомобили концерна PSA стали ставить новое семейство бензиновых двигателей серии EP, разработанных совместно с концерном BMW Group. Это инновационное сотрудничество позволило создать семейство самых современных двигателей, в которых используются технологии XXI-го века.

Этими двигателями, которые производятся на заводе PSA Peugeot-Citroen в Дуврине (Douvrine) на севере Франции, комплектуются также автомобили марки Mini Cooper и Cooper S, выпускающиеся BMW Group в Великобритании.

Естественно многого узнать об этих моторах мы не можем, производители держат своих новичков под завесом тайны, но, тем не менее, информация, пусть малыми порциями, но все же просачивается.

Итак, какие же новые технологические решения при производстве этих двигателей, доказывают их совершенство и надёжность?

Во-первых, процесс отливки головок блока цилиндров теперь осуществляется без использования форм. Во-вторых, в качестве материала блока цилиндров используются легкие сплавы, при этом рубашка охлаждения запрессовывается в данный блок. В-третьих, при балансировке коленчатых валов не используются дополнительные противовесы. В-четвертых, используется двухсторонняя ковка шатунов. В-пятых, на предприятии внедрён «сверхкоординированный» контроль качества производства и закупок, а также принцип полной прозрачности контроля качества на всех заводах-смежниках.

Приведем краткую сравнительную характеристику данных двигателей.

Характеристики двигателя

1.6 л VTi

1.6 л THP Turbo

150 л.с.

1.6 л THP Turbo

140 л.с.

Рабочий объём, см3

Крутящий момент, Нм/ об.мин.

Диапазон реализации максимального крутящего момента, об.мин.

Диаметр цилиндра, мм

Давление наддува, бар

4-х цилиндровый рядный

Система изменения фаз газораспределения и высоты подъёма клапанов VTi

Система изменения фаз газораспределения VVT

Турбокомпрессор BorgWarner "Twin-Scroll" с автономным охлаждением

роликовые толкатели и гидроопоры

Распределённый (многоточечный) впрыск

Непосредственный (прямой) впрыск

5-ступенчатая КПП BE4/5N

5-ступенчатая КПП BE4/5N

Адаптивная 4-диапазонная AL4 с системой "Tiptronic System Porsche"

Адаптивная 4-диапазонная AL4 с системой "Tiptronic System Porsche"

dvig

dvig

dvig

dvig

dvig

dvig

dvig

Ну а теперь немного о тех технических новшествах, которые применены в данных двигателях.

Система изменения фаз газораспределения VTi - «Variable Valve and Timing injection»

Появление в современных двигателях системы изменения фаз газораспределения связано с тем, что характер поведения газов в самом цилиндре, во впускном и выпускном трактах, меняется в зависимости от режимов работы двигателя. При работе двигателя, постоянно изменяется скорость течения, возникают различные колебания и завихрения упругой газовой среды, которые приводят как к полезным резонансным так и к паразитным явлениям. По этим причинам скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы. Например, для работы на низких оборотах необходимы узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов, а фаза одновременного открытия впускного и выпускного клапана должна быть как можно короче. Однако, во время работы на оборотах, соответствующих максимальной мощности длительность открытия клапанов необходимо максимально сократить, открывать клапаны чуть раньше, иными словами, сделать фазы максимально широкими, в то же время, прогнать намного больший объём газов через цилиндры, чем на низких оборотах, для обеспечения высоких крутящего момента и мощности. Как видим, требования, которые необходимо учесть и увязать между собой конструкторам - взаимоисключающи: с одними и теми же фиксированными фазами двигатель не может, но должен обладать высокой тягой на низких и средних оборотах, и при этом, высокой мощностью на высоких. При этом не стоит забывать о все более ужесточающихся экологических нормах и о необходимости экономии топлива в современных условиях.

Для того, что бы разрешить этот парадокс и была изобретена система изменения фаз газораспределения, которая подстраивает работу газораспределительного механизма под различные режимы работы двигателя, не только сдвигая фазы по времени, но и сужая или расширяя их!

Система VTi - это система, не только сдвигающая по времени, расширяющая или сужающая фазы газораспределения, но и изменяющая положения впускных клапанов (в пределах 0.2 - 9,5 мм). Она имеет много общего с «фирменной» технологией BMW - Valvetronic.

Двигатели EP6, оснащённые системой VTi, в отличие от других двигателей, используют комплекс механических и электронных элементов с целью минимизации использования для управления дроссельной заслонки, устаревшего и очень несовершенного узла регулирования подачи поступающей в цилиндры рабочей смеси. При неполном открытии привычная заслонка создаёт слишком большое сопротивление потоку воздуха, что приводит к увеличению расхода топлива и повышению токсичности выхлопных газов. Однако, «старую» дроссельную заслонку не убрали из двигателя совсем. На большинстве режимов работы двигателя заслонка остаётся полностью открытой и лишь на некоторых режимах «просыпается».

Общий принцип функционирования.

В двигателях EP6 привычная цепочка «впускной распределительный вал (1) - коромысло - клапан» была дополнена эксцентриковым валом (2) и промежуточным рычагом (3). Поворот эксцентрикового вала (2) осуществляется электроприводом. Шаговый электродвигатель, управляемый компьютером, поворачивая эксцентриковый вал (2), увеличивает или уменьшает плечо промежуточного рычага (3), задавая необходимую свободу перемещения коромыслу (4), с одной стороны опирающемуся на гидроопору (5), а с другой, воздействующему на впускной клапан (6). Меняется плечо промежуточного рычага (3) - меняется высота подъема клапанов, от 0.2 мм до 9.5 мм (7) в соответствии с нагрузкой на двигатель.

Ну а теперь поговорим о преимуществах использования системы VTi с точки зрения владельца автомобиля с данным двигателем.

Использование системы VTi благотворно сказалось на динамике автомобиля. Ведь никаких электронных ограничителей теперь нет. Двигатель EP6 практически мгновенно реагирует на нажатие педали "газа". Это приводит к тем цифрам, которые характеризуют тяго-динамические возможности двигателя: у 120-сильного двигателя уже при 2000 об/мин крутящий момент достигает 88% своего максимального значения. Для сравнения - у турбоверсий максимум крутящего момента развивается на 1400 об/мин.

dvig

dvig

Применение системы VTi обеспечивает весьма серьезную экономию топлива, которая, по расчетам, на холостом ходу достигает 15 - 18%, а при наиболее часто используемом диапазоне оборотов - до 8 - 10%. В этом случае клапан поднимается всего на 0.5-2.3 мм, и проходящий через этот зазор воздух, благодаря большей скорости потока, полнее смешивается с бензином. Образуется смесь с заранее заданными и оптимальными свойствами. Само собой разумеется, что двигатели семейства EP6 удовлетворяют требованиям экологических норм не только EURO IV, но и после символической модернизации, даже EURO V (данные нормы в следующем, 2009 году станут в Европе основными).

Теоретически, двигатель с системой VTi должен быть непривередлив к качеству бензина и легко «переваривать» даже обычный 92-й бензин. Однако, специалисты Peugeot, после исследования отечественного, в частности российского бензина, рекомендуютприменять бензин с октановым числом никак не ниже 95. Тут мы заметим, что при проведении недавнего тест-драйва Пежо 308 с двигателем ЕР6 1,6 VTi? 120 л.с., мы отметили некотрую его заторможенность и недостаточную (на наш взгляд) откликаемость. Так вот оказалось, что этот автомобиль, был заправлен как раз 92-м бензином.

Турбокомпрессор BorgWarner "Twin-Scroll" (Двигатели EP6DT 140 л.с. и 150 л.с.)

Все мы знаем, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива сгорает, тем больше крутящий момент и мощность. В то же время, для горения топлива необходим кислород, содержащийся в воздухе. Поэтому в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Смешивать топливо с воздухом необходимо в определённом соотношении. Для бензиновых двигателей на одну часть топлива полагается 14-15 частей воздуха, в зависимости от режима работы, химического состава топлива и множества других факторов. Обычные «атмосферные» двигатели засасывают воздух самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая - чем больше объём цилиндра, тем больше воздуха, а значит, и кислорода в него попадёт на каждом цикле. Для того, чтобы увеличить объем подаваемого воздуха в 1905 году было запатентовано первое устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов, иначе говоря, был придуман турбонаддув. Теперь чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность.

dvig

dvig

Эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах количество выхлопных газов невелико, а скорость их мала, поэтому турбина раскручивается до небольших оборотов, и компрессор почти не подаёт в цилиндры дополнительный воздух. В результате этого эффекта бывает, что до трёх тысяч об/мин двигатель не тянет, и только потом, после четырёх-пяти тысяч об/мин, "выстреливает". Этот эффект называют" турбоямой". Причём, чем больше размеры и масса комплекта турбина / компрессор, тем дольше он будет раскручиваться, не успевая за резко нажатой педалью газа. По этой причине двигатели с очень высокой литровой мощностью и турбинами высокого давления, страдают "турбоямой" в первую очередь. У турбин низкого давления "турбояма" почти не наблюдается, однако, высокой мощности на них достичь невозможно.

Один из вариантов решения проблемы турбоямы - турбины с двумя "улитками", называемые Twin-Scroll. Одна из "улиток" (чуть большего размера) принимает выхлопные газы от одной половины цилиндров двигателя, вторая (чуть меньшего размера) - от второй половины цилиндров. Обе подают газы на одну и ту же турбину, эффективно раскручивая её, как на низких, так и на высоких оборотах.

Такие турбины на современных автомобилях уже не редкость. Но совместная работа BMW и PSA Peugeot-Citroen привела к появлению бензинового двигателя с прямым впрыском и турбокомпрессором BorgWarner "Twin-Scroll" в сочетании с системой изменения фаз газораспределения VVT. Турбокомпрессор двигателя EP6DT имеет важную особенность: впервые на турбокомпрессоре для двигателя такого литража применили схему наддува Twin-Scroll с раздельным выпускным коллектором, подающим отработавшие газы от каждой пары цилиндров по отдельности, а не от всех четырех сразу. В результате этого полностью отсутствует эффект турбоямы, а эффективная работа двигателя начинается уже с 1400 об/мин.

Ещё одной очень важной особенностью турбокомпрессора этого двигателя является наличие системы автономного охлаждения. Управление контуром охлаждения турбокомпрессора осуществляется отдельным компьютером.

Время осуществления циркуляции охлаждающей жидкости в контуре после выключения двигателя может достигать 10 минут. Благодаря наличию этого контура, использование так называемых турботаймеров не требуется, а долговечность и безотказность работы турбокомпрессора увеличивается в несколько раз.

Система непосредственного (прямого) впрыска топлива (двигатели EP6DT 140 и 150 л.с.)

Наиболее заметным отличием системы непосредственного (прямого) впрыска топлива от "классической" многоточечной является расположение форсунки. Если у обычных впрысковых моторов она "смотрит" из впускного коллектора на клапан, то в системах непосредственного (прямого) впрыска распылитель форсунки находится непосредственно в камере сгорания. Отсюда и название системы впрыска. Смесеобразование происходит прямо в цилиндре и камере сгорания, что позволяет избежать излишних потерь и оптимизировать процесс сгорания топлива.

Двигатель с непосредственным (прямым) впрыском бензина работает на топливо-воздушной смеси, по своему составу сильно отличающейся от используемой на двигателях с "классической" многоточечной системой впрыска. Эта смесь является "суперобедненной", так как на некоторых режимах работы двигателя достигает соотношения воздуха и топлива в пропорции 30 - 40 / 1. Это и является причиной достижения топливной экономичности особенно в момент работы двигателя в режиме наименьших нагрузок.

Непосредственный (прямой) впрыск топлива более перспективен и эффективен с точки зрения сгорания топлива. Он позволяет двигателю работать на более высоких степенях сжатия по сравнению с двигателями, оснащёнными классической многоточечной системой впрыска топлива. У обычных бензиновых двигателей невозможно поднять степень сжатия выше 12 - 13. Причина этому - детонация (слишком раннее, взрывоподобное воспламенение топливо-воздушной смеси в процессе сжатия). Непосредственный (прямой) впрыск топлива устраняет это препятствие, так как в цилиндре сжимается только воздух. Детонация невозможна. Топливо впрыскивается в камеру сгорания под давлением до 120 Бар. Воспламенение происходит в строго заданный момент вне зависимости от степени сжатия топливо-воздушной смеси. В результате двигатель развивает большую мощность, потребляет меньше топлива и выделяет меньше вредных газов, особенно в сочетании с использованием системы изменения фаз газораспределения VVT.

Двигатели Peugeot EP6

Новая серия бензиновых моторов РSA ЕР появилась в результате совместной разработки компаний Peugeot-Citroen и BMW Group в 2005 году. Задача двух мировых концернов была создать линейку турбированных атмосферных агрегатов нового поколения для широкого спектра легковых автомобилей. В результате автомобильный рынок получил несколько версий двигателей широкого диапазона применения объёмом от 1.4 литра до 1.6 литра и мощностью от 95 до 270 л.с., которыми оснащали многие модели Peugeot, Citroen, BMW, а также машины под брендом Mini Сooper, входящему в BMW Group.

Агрегаты ЕР6 пришли на смену устаревшем сериям TU и XU, отвечая новым экологическим нормам Евро-5, Евро-6 и стали более унифицированными, что дало преимущество в цене, позволяя оснащать ими бюджетные городские автомобили гольф-класса, представительские седаны, мощные кроссоверы и спортивные купе. Качество нового ряда получилось настолько удачным, что на протяжении восьми лет каждая новая версия двигателя ежегодно удостаивалась международной престижной премии «Engine of the year».

Технические характеристики серии ЕР6

Технологии и особенности конструкции

Все двигатели серии, начиная с первого ЕР6, сконструированы по одной схеме: классический рядный с верхним расположением распредвалов (DONS), 16-ти клапанной системой на четыре цилиндра и однотипным ГРМ с изменяющимися фазами газораспределения. Каждая новая версия модифицировалась в сторону повышения мощности при увеличении диаметра цилиндра и хода поршня. Большинство деталей на моторах этой серии взаимозаменяемы, новые интегрированные технологии были также стандартизированы. Долговечность узлов агрегата достигалась за счёт запатентованных разработок компании PSA:

  • Коленчатые валы и шатуны изготовлены по технологии АVT (Anti-Vibration Torsion) методом катанной ковки. Это придаёт повышенную вибростойкость на предельных нагрузках и уменьшает вес механизмов.
  • Блоки цилиндров имеют двойную конструкцию – внутри основного корпуса из высокопрочного сплава марки АS7G, расположена цельная «рубашка» из более лёгкого жаропрочного, в которой заплавлены цилиндры. Благодаря такой разработке вес всего блока уменьшен на 20%, а естественная вибрация гасится внутри самого блока.
  • Головка блока цилиндров также выполнена из специального сплава в отличие от своих конкурентов (основной материал ГБЦ двигателей – чугун).
  • Дополнительная система охлаждения в цилиндропоршневой системе реализована в конструкциях масляных канавок головки блока и жиклёров в поршнях, по которым подаётся масло прямо к внутренней чашке цилиндра.

Система фазораспределения впрыска топлива Valvetronic

VTi (Vаriаble Vаlvе аnd Timing injеctiоn) – технология с изменяющимися фазами работы впускных клапанов, разработанная специально для серии агрегатов ЕР компанией BMW. В обычных двигателях более поздних серий PSA система впрыска топлива работает одинаковыми циклами, не зависящими от значения крутящего момента и мощности агрегата. Контроль фаз газораспределения статичен под управлением ЭСУД, а скорость работы клапанов напрямую зависит от скорости вращения коленчатого вала. Во время открытия или закрытия дроссельной заслонки в коллекторе возникает разница давлений, подача топлива изменяется в режиме постоянных фаз, из-за чего происходит эффект «завихрения» в газораспределительной системе. Такое явление вызывает падение КПД двигателя, уменьшая его ресурс и способствует повышенному выбросу вредных веществ с выхлопными газами (остатки несгоревшего топлива).

Система Valvetronic позволяет менять фазы газораспределения в зависимости от изменения мощности в процессе подачи топливной смеси. Принцип работы VТi заключается в дополнительном механическом узле на впрыске, который регулирует давление и время открытия/закрытия клапанов под управлением электроники в общей цепи. Дроссельная заслонка подключается в некоторых режимах, оставаясь открытой. Во время работы двигателя на низких оборотах происходит более позднее открытие и закрытие клапанов с узкой фазой газораспределения (время срабатывания клапана). На высоких оборотах цикл увеличивается, обеспечивая более ранний подъём клапана. В результате соотношение крутящего момента и мощности на каждом цикле становится оптимальным для полного сгорания рабочей смеси в цилиндрах, исключая эффект «завихрения» и колебаний потока.

Система фазораспределения впрыска топлива Valvetronic

  1. Распределительный вал.
  2. Дополнительный эксцентриковый вал.
  3. Рычаг передачи момента.
  4. Коромысло клапана.
  5. Гидравлическая опора клапана.
  6. Впускной клапан.
  7. Изменяющийся зазор.

Высота подъёма клапанов меняется в зависимости от нагрузки на двигатель. Эксцентриковый вал встроен в систему ЭСУД с помощью электропривода, который управляет скоростью вращения независимо от вращения коленчатого вала. Динамика работы двигателя увеличивается за счёт скорости срабатывания всей системы.

Система фазораспределения впрыска топлива Valvetronic

Так, например, максимальное КПД на агрегате ЕР6DT при показателе 2000 об/мин даёт значение 88% при мощности в 150 л.с. Экономия топлива в моторах, оборудованных Valvetronic составляет на холостых оборотах до 15%, на максимальных – до 8%. Единственный недостаток такой системы – повышенная требовательность к качеству топлива: образование нагара на клапанах быстро приводит к нарушению регулировки величины зазора.

Турбированная система питания по технологии BоrgWаrnеr “Twin-Scrоll

В атмосферном двигателе показатель мощности напрямую зависит от количества сгораемой рабочей смеси в цилиндрах за один цикл. Чем больше объём смеси, тем выше крутящий момент и мощность. Бензин поступает, смешиваясь с кислородом – это необходимое условие для полного сгорания: соотношение топлива и воздушной смеси должно быть в пропорциях один к пяти в зависимости от режима работы. В агрегатах ранних конструкций рабочая смесь получалась за счёт разницы давлений между атмосферой и камерой цилиндра. Турбокомпрессор нагнетает отработавшие горячие газы принудительно, обеспечивая почти мгновенное включение максимального режима.

В двигателях ЕР6 второго поколение применена технология двойной турбины Twin-scroll (символы в маркировке «Т»). Конструкция турбонагнетателя выполнена в форме улитки с раздельными впускными коллекторами. Один воздуховод нагнетателя забирает отработанный газы из одной половины блока цилиндров, другой (меньшая размером) – от второй. Поток объединяется в общей подаче максимально раскручивая турбину на высоких и низких оборотах. Такая технология позволяет избежать падения мощности во время разгона, когда в простых турбокомпрессорах возникает эффект «турбоямы».

Турбированная система питания по технологии BоrgWаrnеr “Twin-Scrоll

Лопатка турбины собственной разработки компании PSA выполнена из керамики, имеет высокий уровень термостойкости и повышенный ресурс работы. Охлаждение турбокомпрессора автономное, а весь цикл работы и циркуляции охлаждающей жидкости управляется отдельным блок-контроллером в системе ЭСУД, учитывая остальные параметры режимов работы агрегата. В сочетании с прямым впрыском топливной смеси и системой впрыска типа Valvetronic эффективное срабатывание турбокомпрессора происходит уже на малых мощностях при 1300 об/мин.

Cоmmоn Dirесt Injеctiоn – прямой впрыск топлива

Двигатели ЕР с аббревиатурой СDI оснащены системой непосредственного (прямого) инжекторного впрыска топлива. В отличие от классической конструкции, применявшейся в поздних версиях серии TU, форсунки агрегатов ЕР6 СDI подают рабочую смесь напрямую в камеру сгорания цилиндров (обычные двигатели снабжены впускным коллектором с выходом на клапан). Образование и воспламенение топливной смеси происходит прямо в цилиндре, избегая потери мощности и позволяя значительно экономить топливо. На оптимальных режимах работы агрегата соотношение атмосферного воздуха и бензина может достигать пропорции 30/1 – это в два раза ниже, чем в системах с многоточечным впрыском и коллектором.

Cоmmоn Dirесt Injеctiоn – прямой впрыск топлива

а – Свeча накаливания

b – Выпускнoй клапан

g – Впускнoй клaпaн

h – Фoрсункa прямoго впрыскa

Такая конструкция позволяет работать мотору на высоких оборотах при большом показателе степени сжатия, что даёт возможность увеличивать мощность за счёт изменения диаметра цилиндра и хода поршня. Классический двигатель ограничен определённой степенью сжатия, которая составляет не более 120 бар – более высокое давление в коллекторе вызывает эффект детонации, когда топливо воспламеняется раньше впрыска. При использовании системы Cоmmоn Dirесt Injеctiоn детонация исключается – воздушная смесь смешивается с топливом непосредственно в цилиндре. Воспламенение рабочей смеси задаётся в строго заданном цикле под электронным управлением смежных систем газораспределения. Преимущества прямого впрыска:

  • Возможность повышения мощности двигателя, не меняя его конструктивных узлов (в том числе чип-тюнинг).
  • Выхлопные газы содержат меньшее количество токсичных веществ – топливо сгорает полностью независимо от режима работы. Все двигатели серии ЕР с символом CDi соответствуют требованиям экологических норм Евро-5, Евро-6.
  • Ресурс работы агрегата увеличивается – сбоев в работе фаз газораспределения и проблем с детонацией в процессе эксплуатации не возникает.

Применение интеркулера

На двигателях ЕР6 DT в системе впрыска применяют интеркулер. 6DT – это турбированный мотор с конструкцией впускного коллектора и высоким крутящим моментом, где перед подачей воздуха для его смешивания с топливом требуется охлаждение. В процессе нагнетания турбиной воздух становится горячим, содержание кислорода в смеси падает, в результате чего происходит падение мощности на оборотах. Кроме того, при работе на повышенных нагрузках и большом крутящем моменте возникает большая вероятность эффекта детонации (преждевременного воспламенения). Применение интеркулера для охлаждения воздушной смеси предотвращает детонацию, повышая эффективность работы двигателя на 15-20 %.

Принцип работы интеркулера – механическое охлаждение в результате дополнительной циркуляции воздуха в решётках, внешне напоминающие радиатор-теплообменник без охлаждающей жидкости. Система интеркулера разбивает плотность потока, снижая его температуру перед подачей на коллектор. Такой узел работает автономно, надёжен и не требует подключения к ЭСУ (электронной системе управления).

Конструкция масляного насоса с контролем давления

Ещё одна инновационная разработка концерна BMW, которая была реализована в агрегатах серии ЕР – масляной насос с регулировкой подачи объёма масла и его давления в масляных магистралях. Принудительная подача масла в системе происходит в зависимости от значения крутящего момента двигателя и его температуры под контролем ЭСУД. По такому же принципу работает система охлаждения, активизируя подачу охлаждающей жидкости при нагревании узлов. Насос соединён с приводом шкива коленвала специальной конструкцией (фрикционная передача), которая регулирует скорость вращения, обеспечивая необходимое давление и объём. Экономия расхода масла при этом снижается на 4-5%, потребление топлива в среднем на 1%.

Эксплуатация и обслуживание

Для всего семейства агрегатов ЕР рекомендуют определённый тип масла с индексом вязкости не более 30. ГРМ таких моторов особенно чувствительна к качеству смазки, поэтому при выборе марки масла важно применять только проверенные бренды. В противном случае начинается разрегулировка систем фаз газораспределительного механизма, быстрый износ элементов цилиндропоршневой группы и потеря мощности.

Нормативные показатели серии ЕР

*Расход топлива: город/трасса/смешанный цикл.

При всей прогрессивности серии ЕР, низком расходе топлива и достаточно высокой мощности для объёма в 1.6 литра, отзывы владельцев автомобилей Пежо и Ситроен, на которые в основном устанавливали эти моторы, выдают много проблемных мест. Отмечают малый ресурс расходников, из-за которого регламентное обслуживание приходится делать раньше заявленного производителем.

Периодичность замены и заявленный ресурс узлов и механизмов двигателей серии ЕР:

  • Замена масла в системе – каждые 20 000 км
  • Цепной привод ГРМ типа «dual VTi» (второе поколение) – заявленный ресурс производителем не ограничен. Статистика замены – в среднем каждые 100 тысяч км
  • Регулировка зазоров клапанов с механизмом гидрокомпенсаторов – после 150 тысяч км пробега
  • Воздушные фильтры – 25 000 км
  • Топливный фильтр – 65 000 км
  • Фильтр грубой очистки – 80 000 км
  • Свечи зажигания – 45 000 км
  • Охлаждающая жидкость – 120 000 км

Новые агрегаты ЕР в России выходят из строя на 20-30% чаще, чем в Европе по причине некачественного топлива.

Самые распространённые агрегаты, которые устанавливались для продажи в официальных российских дилерских центрах – ЕР6 СDT и его модернизированная версия ЕР6 CDTM. Стоимость нового такого агрегата составляет около 140 000 рублей, контрактный восстановленный мотор можно приобрести за 60 000 рублей.

Типичные проблемы и неисправности

При своевременном техническом обслуживании серьёзные поломки у агрегатов серии ЕР начинают появляться после 100 тысяч км пробега даже с бережной эксплуатацией и диагностикой расходников. Исключение может быть с комплектацией ЕР6 CDTM – двигатель прошёл адаптацию специально для российского рынка, поэтому он считается более надёжным. Самые частые поломки:

  • Преждевременное растяжение привода цепи ГРМ в первом поколении двигателей – часто выходила их строя уже через 40-45 тысяч км пробега. На холостых оборотах был слышен шум в подкапотном пространстве, при дальнейшей эксплуатации быстро происходил её износ вплоть до обрыва и заклинивания клапанной системы. Причиной служила неудачная конструкция натяжителя цепи, которую устранили на моторах второго поколения.
  • Нарушение регулировки подъёма и контроля зазора клапанной системы, некорректная работа Valvetronic. Происходила из-за образования нагара на клапанах. Высокую требовательность этих двигателей к качеству топлива наблюдают на всех модификациях.
  • Утечка масла в масляных магистралях, износ сальников и прокладок. При падении уровня масла отказывал масляный насос в системе. Специалисты объясняют такого рода проблемы эксплуатацией двигателя в зимнее время при экстремально низких температурах ниже минус 20 С. Штатные заводские расходники не предназначены для российской погоды, их обычно меняли на более устойчивые к перепадам температур на силиконовые.
  • Отказ или сбои в работе термостата также наблюдались по причине частого запуска агрегата при низкой температуре.
  • Нарушение герметичности турбокомпрессора, которое вызывало потерю мощности, перегрев и в моторах ранних версий с конструкцией впускного коллектора детонацию.
  • Промерзание системы вентиляции картера, износ уплотнительных прокладок. Проблему решили после 2007-го года, установив дополнительный обогрев.

Возможности тюнинга

Классическая рядная конструкция со стандартизированными узлами на агрегатах серии ЕР позволяет увеличивать мощность мотора до 300-400 л.с. с применением различного дополнительного оборудования, изменения на прямоточный выхлоп и установкой системы Аquamist-Devils-Оwn (водометанола). Профессиональные чип-студии монтируют комплекты оборудования, меняя турбину с турбокомпрессором на более мощный тип Bi-turbo, выхлопную трубу с катализатором прямого тока, интеркулер на жидкостном охлаждении, а также делают перепрошивку режима впускных клапанов. Результатом такого тюнинга становится прокачанный автомобиль с динамикой разгона в 6,5 секунд до 100 км и максимальной скоростью до 280 км/ч.

Небольшой тюнинг своими руками, не вмешиваясь в конструкцию впрыска топлива, делают перепрошивая ЭСУД с отключением катализатора и лямбда-датчика. После таких изменений мощность двигателя можно повысить на 25%, снизив при этом экологическую норму до Евро-2 и применяя бензин с высоким октановым числом 98.

Перезагрузка новых данных в систему электронной системы управления полностью перенастраивает мотор на экстремальную эксплуатацию. Кроме отключения датчиков контроля, изменения вносятся в фазораспределительный цикл впрыска, при этом выпускные клапана работают на износ.

Следует помнить, что после чип-тюнинга двигателя и любого вмешательства в конструкцию ГРМ, ресурс пробега снижается кратно в разы. Узлы и механизмы несут повышенную нагрузку, не предназначенную для высокой вибрации и температур, и быстро выходят из строя.

Читайте также: