Схема тнвд bosch мерседес

Обновлено: 02.07.2024

Принципы работы и тюнинг ТНВД Bosch VE

Предисловие:
Приведённый ниже текст, за авторством некого Ian Petersen, написанный в далёких уже 2003-2004 годах, был найден мною случайно, и оказался настолько полезен лично для меня, что я решил перевести его, и поделиться с вами. В RU сегменте интернета подобных инструкций я не встречал, постараюсь дополнить английский оригинал схемами и фотографиями для лучшего понимания. Достаточно сложно было подобрать названия для деталей, в русском и в английском варианте всегда минимум по 2 варианта.

Отказ от ответственности:
Эта статья создана для интереса неискушённого читателя из информации, собранной в различных источниках включая техническую литературу компании Bosch и интернет. Автор не претендует на звание эксперта по тюнингу дизельных двигателей, а статья не позиционируется, как точное техническое пособие. Автор не несёт какой-либо ответственности за последствия действий, предпринятых другими лицами с использование какой-либо или всей информации из этой статьи. Убедитесь, что вы полностью понимаете информацию и принимаете последствия, прежде чем предпринимать какие-либо действия.
Тут нет такого понятия, как «бесплатный обед» — если вы настраиваете свой двигатель на получение больше производительности, он будет работать в более тяжёлых режимах, и компоненты будут изнашиваться быстрее. А если вы ошибётесь в настройке, это может сократить ресурс вашего двигателя в разы, или вовсе вывести его из строя.

Буст-компенсатор
Теперь вернёмся к приведённому выше «при условии, что давление наддува остаётся всегда постоянным…» Конечно оно редко остаётся постоянным надолго. По этой причине ТНВД Bosch VE на двигателях 200tdi и не имеющих EDC двигателях 300tdi, имеет буст-компенсатор, так же известный как «анероид». Именно он и контролирует количество топлива пропорционально величине наддува. Это необходимо, так как количество воздуха в цилиндрах сильно изменяется при увеличении давления наддува от нуля до полного буста. При низком давлении количества воздуха не достаточно для полного сгорания максимального объёма топлива. Поэтому работа компенсатора заключается в уменьшении количества топлива, когда давление наддува меньше максимального. От выхода холодной части турбины к ТНВД идёт трубочка, которая передает давление наддува в камеру с диафрагмой на верхней части буст-компенсатора.
Чтобы гарантированно достигать низкого уровня вредных веществ в выхлопе на каждой машине сходящей с конвейера, стандартные настройки буст-компенсатора были всегда очень «сдержанные». Это значит, что они жестко ограничивали количество впрыскиваемого топлива при неполном бусте, чтобы обеспечить низкий уровень дыма. Именно это и приводит к легендарной неспешности этих двигателей.
Путём аккуратной настройки буст-компенсатора для каждого конкретного двигателя, можно добиться значительного прироста на низком бусте, а так же при низких и средних оборотах, без чрезмерных выбросов чёрного дыма. [Кстати, если вы дымите, как идущий вразнос тепловоз, вы впустую тратите солярку, недополучая много энергии. Цель состоит в том, чтобы двигатель был на грани создания чёрного дыма, когда мотор находится в режиме полной нагрузки при любой комбинации оборотов и давления наддува.]
Буст-компенсатор работает автоматически, подстраивая позицию ограничительного штифта внутри насоса. Штифт установлен горизонтально внутри ТНВД, его кончик видно на дне колодца, если вытащить диафрагму и буст-пин. Когда штифт свободен ТНВД нагнетает максимальное количество топлива к форсункам. В утопленном положении штифта, количество топлива снижается в независимости от оборотов или нагрузки на двигатель, чтобы компенсировать низкое давление.
Позицию штифта меняет прикрепленный к диафрагме буст-пин (управляющий конус — control cone), при изменении давления наддува он движется продольно в колодце компенсатора. Когда давление наддува нет, например на холостом ходу, диафрагму вместе с буст-пином поднимает пружина, пока они не упрутся в регулировочный винт на крышке. В этом положении ограничительный штифт упирается в самую толстую часть конического наконечника буст-пина, то есть буст-пин максимально утапливает его.

По мере увеличения буста, давление на диафрагму превышает усилие пружины и буст-пин движется вниз вместе с диафрагмой. При этом ограничительный штифт выходит из своего гнезда, следуя за формой конуса, в который он упирается. Когда буст достигает максимума — диафрагма и буст-пин перестают двигаться дальше, ограничительный штифт останавливается и далее коррекция подачи топлива происходит только с помощью центробежного регулятора, без ограничений буст-компенсатора.

1.Регулировка буст-компенсатора
Для буст-компенсатора доступны три возможные регулировки:
1. Поворот буст-пина вместе с диафрагмой.
2. Изменения преднатяга пружины путём регулировки зубчатого колеса ограничителя.
3. Регулировка точки покоя диафрагмы и буст-пина с помощью настройки упорного винта в крышке буст-компенсатора.
Далее рассмотрим подробнее все эти регулировки и поймём их влияние на работу топливной аппаратуры, со ссылками на соответствующие фотографии и схемы.

1. Положение буст-пина и диафрагмы.
1.1. Как показано на фото 1, на конце буст-пина имеется конус со смещением по оси вращения, или другими словами имеющий эксцентричное положение. Следовательно, при вращении буст-пина и диафрагмы, профиль конуса, обращённый к штифту, изменяется. Это основная регулировка, которая определяет амплитуду движения штифта.

1.2. На стальной пластине диафрагмы есть метка (Фото 2.) по которой можно ориентироваться в каком положении находится буст-пин. Важно отметить или запомнить положении метки прежде чем вносить какие-либо изменения!

1.3 Профиль буст-пина может отличаться, в моём случае имеется маркировка «13H». Предположительно существуют другие варианты, зависящие от года выпуска и региона. Так же в продаже вы можете найти кустарные буст-пин, имеющие обычно более примитивную форму, не позволяющую произвести более точную настройку.

1.4. Далее положение диафрагмы будет отсчитываться в градусах от её позиции максимума. Под максимальной точкой имеется ввиду положение, в котором конус на конце буст-пин удалён максимально от штифта, то есть позиция максимума является позицией максимальной подачи топлива. В моём случае позиции максимума совпала с контрольной меткой на металлическом диске диафрагмы, которая изначально находится в позиции на 12 часов.

1.5. Также положение максимально открученного ограничительного винта в крышке компенсатора примем за точку 0.0мм. То есть точку самой высокой позиции диафрагмы.

1.6. График 1 показывает приблизительное отношение между углом поворота диафрагмы и штифтом. [Размеры указаны приблизительные с округлением до миллиметра, взяты из моей сборки 13H и не должны восприниматься как точные или совершенно точные.]

1.7. Диафрагма в сборе с буст-пин имеют общий вертикальный ход около 10.0мм. В самом низу рабочей поверхности конуса, на уровне соприкосновения со штифтом диаметр составляет примерно 9.0мм. На уровне верхней части рабочей поверхности конуса диаметр составляет около 5.0 мм. Сам конус смещён от оси буст-пин примерно на 1.0мм.

Как показано на графике, штифт имеет ход около 4.0мм, при полном ходе диафрагмы в 10.0мм. При повороте диафрагмы\буст-пина от 0 до 180 градусов, диапазон хода штифта может изменяться от 0-4мм до 1-5мм. Так как конус на конце буст-пин симметричен сам по себе, не важно в какую сторону вращать диафрагму из положения 0, то есть поворот в 180 градусов составляет полный диапазон настроек.

2. Преднатяжение пружины.

2.1 На фото 3 видно зубчатое колесо, положение которого определяет преднатяг пружины. Моя пружина маркирована «7 712», по-видимому является пружиной с линейной навивкой. Поэтому я предположил, что соотношения между давлением наддува и положением диафрагмы будут линейными. График 2

2.2 Чтобы несколько упростить график, я предположил, что максимальный буст составляет 1.0 бар, и существует положение пружины преднатяжителя, которое позволяет буст-пину сместиться ровно на 10.0мм при 1.0 бар. Повторюсь, задача графика состоит не в том, чтобы дать точные данные, а просто продемонстрировать зависимости между бустом и положением компонентов системы.

2.3. Зубчатое колесо является нижней опорой для пружины. Поворачивая его по часовой стрелке (закручивая), вы снижаете преднатяг пружины. И наоборот, поворачиваете против часовой – преднатяг увеличивается. Положение зубчатого колеса фиксируется подпружиненными пальцами, чтобы провернуть колесо, надо отжать их с помощью двух маленьких отвёрток. Само колесо в отличии от диафрагмы не имеет меток, поэтому прежде чем вносить изменения, следует нанести метки самостоятельно, чтобы потом вернуть всё в исходное положение.

2.4. На графике 2 указано преднатяжение в миллиметрах. Я не измерял шаг резьбы зубчатого колеса, чтобы связать обороты с миллиметрами вертикального перемещения пружины. Опять же цель графика продемонстрировать влияние преднатяга пружины на подачу топлива. Как показано на графике, увеличение преднатяга потребует более высокого давление наддува для достижения того же самого положения диафрагмы, и наоборот.

3. Диафрагма и нулевое положение.

3.1. На схеме виден ограничительный винт под торкс и контргайка. Так же работа ограничительного винта видна на графике 2. Винт устанавливает нулевое положение диафрагмы, вне зависимости от наддува. В сочетании с другими настройками, он устанавливает минимальный лимит топлива, когда нет давления наддува, например при трогании с места на низких оборотах.

3.2. Сам ограничительный винт доступен после снятия лёгкой, металлической крышечки сверху буст-компенсатора. Аккуратно выковыривается тонкой отвёрткой. Крышечку можно заменить на пластиковую затычку для ножки стула 22мм. Это улучшит герметичность.

3.3. Опять же, необходимо тщательно записывать любые вносимые изменения, в единицах оборотов (или долей оборотов) по часовой стрелке или против. Это позволит вам вернуться к исходным настройкам в любое время, в случае неудачи. Можно нанести небольшую метку на сам винт.

4. Настройка.

Есть два (по крайней мере мне известных) способа подойти к процессу «настройки». «Обычный» подход, чтобы начать с корректировки упорного винта и затем продвигаться внутрь для более тонкой настройки. Я полагаю, что лучший метод — начать с самой фундаментальной регулировки, положения диафрагмы, а затем постепенно улучшать настройку с более тонкими настройками. Тем не менее, я представлю процесс настройки в два этапа, чтобы охватить преимущества обоих подходов.

Настройка часть 1

Первое немедленно улучшение подхвата с холостых оборотов может быть достигнуто путём регулировки стопорного винта. Если вы пока не хотите лезть внутрь самого ТНВД, это хороший вариант для начала. Вам понадобится бита Torx T-27 и ключ на 13.
После снятия крышки, ослабьте контргайку, стараясь не повернуть сам винт. Если на винте нет ржавчины, то гайка должна свободно идти по резьбе, не поворачивая сам винт. Если это так, ослабьте гайку примерно на один оборот. Далее внимательно записывая все действия, поворачиваем винт на пол оборота по часовой стрелке. Аккуратно затяните контргайку, крышка буст-компенсатора изготовлена из лёгкого сплава – не затягивайте слишком сильно.
Теперь попробуйте прокатиться. Если ваш двигатель был в заводских настройках до этого момента, то теперь вы должны почувствовать улучшение подхвата с холостых оборотов и на низком бусте (до 1800 об\мин). Если вы так же замечаете густой чёрный дым, то следует вернуть винт немного в сторону первоначального положения. Не забудьте записать каждую настройку! Если вас устраивает результат, то замените оригинальную крышку или установите аналог, как указанно выше.

Настройка часть 2

Если вы уверены в результатах этапа 1 и готовы двигаться дальше, сначала верните ограничительный винт в исходное положение. Это надо для того, чтобы можно было оценить последующие корректировки без помех от этой первоначальной настройки.
Для этого этапа вам нужно найти подходящий «тестовый холм» — где-то, предпочтительно на скоростной трассе где можно спокойно ехать 100-110 км\ч, надо поддерживать полный газ на высокой передаче на хорошем расстоянии, в идеале более километра.

С этого момента было бы также желательно иметь датчик температуры выхлопных газов (EGT) (также известный как пирометр), установленный для отслеживания потенциально опасной температуры. EGT 720 ° C было рекомендовано, в качестве максимально безопасной температуры для типичного современного (для 2003 года) турбо-дизельного двигателя. Насколько я понимаю, что EGT более 720 ° С в течение длительного периода времени запускает необратимые изменения в металле деталей турбокомпрессора, особенно корпуса турбины, лопаток выхлопной турбины, вестгейта и его седла.
Кроме того, прежде чем начать корректировки, желательно задать «базовую линию» от которой мы потом будем отталкиваться, используя исходные «заводские» настройки. Для этого заедьте на испытательный холм при максимальной тяге, которую сможете выжать, > 2500 об / мин, чтобы определить уровень черного дыма (если есть), и необходимо записать максимальные показания EGT. Также желательно, чтобы наблюдатель следил за уровнем дыма пока водитель концентрируется на вождении, можно обойтись экшен-камерой или регистратором на заднем стекле.

Открутите четыре винта с полукруглой головкой, крепящих верхнюю крышку буст-компенсатора, и снимите крышку (см. Фото 2). Будьте осторожны, чтобы не перекрутить и не повредить трубочку наддува. Затем необходимо отметить изначальное положение контрольной метки диафрагмы (приблизительно) в градусах по часовой стрелке или против часовой стрелки из положения 12 часов (сверху). Например, у меня в оригинале было около 100 ° против часовой стрелки (или между 8 и 9 часами, если вы так предпочитаете).
Теперь вращайте диафрагму в любом направлении, пока она не выскачет, а затем вытащите диафрагму в сборе с буст-пином из скважины (см. фото 5). Не уроните пружинку!

Теперь вы должны увидеть зубчатое колесо и, возможно, ограничительный штифт в глубине колодца. Если штифт ограничения хода не виден, отведите рычаг акселератора вручную, и штифт должен показаться справа в колодце. Отпустив рычаг акселератора и осторожно задвиньте ограничительный штифт обратно с помощью небольшой отвертки, чтобы штифт не мешал позже поставить буст-пин на место.
Затем осмотрите диафрагму, надо определить относительное расположение метки сверху и конуса снизу. В моём случае конус максимально смещён назад от ограничительного штифта, при положении метки на 12 часов. Где бы не находилась ваша метка, отметьте это положение как МАКСИМУМ – позиция которая даёт максимальную подачу топлива на любом бусте. Это хорошая точка отсчёта.
Соберите всё обратно, убедившись, что пружина правильно установлена, и поверните диафрагму до отметки максимум. И пока не вносите никаких других изменений. Теперь езжайте на испытательный холм, дайте полный газ и проверьте количество дыма на полном бусте (примерно выше 2500 об / мин). Не слишком беспокойтесь о выбросах дыма, когда буста нет или он низкий (до 2500 об / мин), на этом этапе это не важно.
Если на полном бусте много чёрного густого дыма (или показания EGT быстро поднимается в опасную зону), поверните диафрагму немного назад. Как упоминалось ранее, если начинать с позиции «максимум», то неважно в какую сторону вращать диафрагму. Поворот на 1-2 часа должен дать заметные изменения. Продолжайте настройку и тестовые прогоны, пока количество дыма и температура вас не удовлетворит. И не забудьте вести записи, особенно по показаниям EGT, и запишите финальную настройку.

После того как вы удовлетворились увеличением тяги на полном бусте и количеством дымка. Перейдём к качеству выхлопа при повышении буста (обычно это происходит между 1500 и 2500 об\мин на полном газе на автомобилях с МКПП). Если в этом режиме слишком дымит, надо увеличивать преднатяг пружины. Это затруднит движение диафрагмы вниз (соответственно увеличение подачи), до того момента когда буст станет чуть выше, это уменьшит количество дыма. И наоборот, если во время разгона на полном газу, образуется мало дыма или он вообще отсутствует, то уменьшение преднатяга пружины добавит немного больше топлива в этот диапазон. Регулировка зубчатого колеса с шагом 90 ° (¼ оборота) должна дать заметные изменения. Запишите окончательную настройку, как только будете удовлетворены результатами.

Наконец, отрегулируйте ограничительный винт, чтобы обеспечить приемлемую производительность и количество дыма (и запишите это!). Это, вероятно, лучше всего достигается путем многократного страгивания с места. Чтобы обеспечить наилучшую тягу с места, может потребоваться поддать немного дымка на холостом ходу, или если присутствует «лаг» до 1500 об\мин.

Настройка часть 3

Еще не было упомянуто о другой часто описываемой корректировке — винте максимальной подачи топлива и контргайке на задней части насоса. Также небольшой поворот этого винта (только ¼ поворота) может вызвать резкое увеличение максимальных показаний EGT. Регулировать винт максимальной подачи нужно с особой осторожностью и только с установленным датчиком EGT.
Я экспериментировал с этим винтом. Но мой автомобиль уже немного дымит при полном газе\полном бусте и имеет максимально приемлемые уровни EGT после относительно короткого периода полной нагрузки. Поэтому я чувствую, что остаточный потенциал, который можно реализовать за счёт увеличения количества топлива с текущим объёмом воздуха, уже невелик. Поэтому винт был возвращён в заводское положение.
Многие другие статьи на эту тему говорят об увеличении количества воздуха, подаваемого в мотор, за счёт увеличения производительности интеркулера или турбины. Если вы решились на эти изменения, тогда да, у вас появится возможность сжигать больше топлива, и тогда регулировка винта максимальной подачи будет оправданна. Будьте осторожны! – не стоит ожидать, что получив так много из 2.5 литров — вы сохраните ему долгую жизнь…
Если вы уже запланировали серьёзные изменения, советую вам сначала на стоковом железе настроить буст-компенсатор. А потом уже, после увеличения эффективности системы наддува и предварительного охлаждения, корректируйте винтом максимальной подачи до достижения необходимых показателей EGT и дыма, прежде чем снова настраивать буст-компенсатор, если в этом будет необходимость.

Обслуживание ТНВД BOSCH mb100d

Обслуживание ТНВД BOSCH mb100d ⇐ 100D. Топливная система (аппаратура)

Продолжаю.
5.Отвинчиваем штуцер (патрубок-по книге) на плунжере подачи в первый циллиндр. Если туго зажат, я брал со старого насоса еще один-два струбцинных фиксаторов (зубчатых шайб-фиксаторов) и, совместив их, ключем отвинчиваем. Здесь чистота, никакой пыли-грязи. Нужно вынуть ПРОКЛАДКИ, ПРУЖИНУ И НАГНЕТАТЕЛЬНЫЙ КЛАПАН (можно пинцетом или проволочкой, но запомнить где низ-верх этого клапана, чтобы установить потом как было прежде) Еще есть там медная прокладка, может сидеть внутри штуцера!.Затягиваем штуцер на место уже без клапана и пружины. Можно и не ставить штуцер или навинчивать кусочек трубки (где ёё взять?), как пишет книга.
Небольшое отступление. Плунжерная пара - по сути - поршень-циллиндр, с той лиш разницей, что нет компрессионных колец. Вещь дорогостоящая, поскольку точность изготовления микронная. Там есть регулировочная линейка (в круглых, не рядочком расположенных плунжерах, а по кругу (есть и такие насосы), стоит наклонная шайба). Эта линейка меняет количество подаваемого в циллиндр плунжерной пары топлива. Если сняли пружину и клапанок, то топливо будет с помощью принудительной подачи ручным насосом беспрепятственно вытекать со штуцера (клапанок подпружиненный мы сняли) до тех пор, пока плунжер не начнет движение вверх и не начнёт сжимать (поднимать вверх) попавшее в плунжерную пару топливо. Но мы будем вращать по чуть-чуть, то-есть, подкачивать топливо при неподвижном плунжере. НАША ЗАДАЧА - УЛОВИТЬ ЭТОТ СЧАСТЛИВЫЙ МОМЕНТ, КОГДА ПОРШЕНЁК НАЧНЕТ ЗАПИРАТЬ ЦИЛЛИНДРИК (ТОПЛИВО ВРАЗ ПЕРЕСТАЁТ ВЫТЕКАТЬ, ПИШУТ О ВОЗМОЖНОМ ПОЯВЛЕНИИ КАПЛИ ЧЕРЕЗ 15-20 СЕК.) ! Следите, не проскочите этот ВАЖНЫЙ МОМЕНТ, ведь топливо не будет поступать вследствии ручной подкачки при неподвижном положении плунжера в любом другом высшем положении, а НАМ НУЖНО ТОЛЬКО САМО НАЧАЛО! Если топливо перестало капать (подниматься в штуцере или в гнезде штуцера при ручной подкачке - это и есть ИСКОМОЕ начало впрыска.
У меня стоит ручной насосик подкачки в виде шприца, а книга писала о каком-то сдвижении грёбаного регулировочного рычага (штанги). Тут я долго искал и матерился, пока не осенило качнуть ручным насосом. Сработало!
6. Подсоединяем топливные трубки от фильтра к насосу. Рычаг подачи топлива на максимум. Качаем насосом ручной подкачки топлива (у кого есть рычаг-штанга, наверняка сдвигаем туда-сюда грёбаную штангу). Если топливо начало вытекать с первого плунжера - крутнём чуток, малую малость, коленвал на пару градусов. Снова рычаг газа на максимум и качаем. Текёт - ещё чуть-чуть проворачиваем коленвал. ЗАДАЧА (повторюсь) - НАЙТИ СЧАСТЛИВЫЙ МОМЕНТ ПРЕКРАЩЕНИЯ ВЫТЕКАНИЯ ТОПЛИВА. В идеале - капля через 15-20 сек. качания вручную(ТАК ХОЧЕТ КНИГА). Книга пишет, что нужно после установки насоса ставить коленвал сразу на 24 градуса. Думаю, что лучше на 45-ти сначала качнуть, пусть протечёт грязь, которая наверняка там скопилась.
7. Поймали таки момент прикращения течи-капания топлива! Ныряем под движок и смотрим на шкалу меток противовеса. Если метка 24 градуса стоит против флажка указателя - повезло, угадали. Если не дошла (больше 24), наклоняем чуток насос (может и долю милиметра) от движка, уменьшаем угол подачи. Если проскочили метку 24 градуса - наклон чут -чуть к двигателю, т. е. увеличиваем угол подачи. Не забываем ослабить- затянуть гайку крепления насоса. Не совпало - повторяем процедуру, крутим-качаем-наклоняем, пока ночало прекращения капания не совпадет с меткой 24 градуса на противовесе. Помните, один зубчик на поводке-муфте насоса - это около 20 градусов, двигайте насосом в долях градусов, чуть-чуть. И посматривайте на распредвал - 1 циллиндр в такте сжатия (идеально-24 градуса до ВМТ), через верх не видно, а снимать поддон неудобно. Спецы должны выставить все перед закрытием поддона или установкой головки блока циллиндров, чтоб не промахнуться с ВМТ (если кололи движок).
Обычно должно совпасть всё фактически с первого раза (угол опережения подачи), если примерно посредине проточек на корпусе насоса стоят шпильки и в момент запихивания насоса не сдвинули муфты.Ориентируйтесь также по топливным трубопроводам, идущим к форсункам, натяг если и будет, то незначительный. Если совсем не то, еще раз снимите насос и проверте, не сбились ли метки в момент установки насоса. Перед повторным снятием и установкой - УГОЛ 45 ГРАДУСОВ ДО ВМТ! В такте сжатия!

Тем, кто желал только проверить угол подачи топлива, снять только трубопровод, ослабить гайки на форсунках (в целях предотвращения возможной детонации - вдруг движок гарячий-можно запустить!), вынуть клапанок и пружинку, снять крышку для контроля положения кулачков (такта сжатия). Произвести процедуру прокачки вручную, если не совпадает - нужно отсоединить трубопроводы от форсунок, ослабить гайки крепления насоса и немножечко! наклонить насос к движку или от движка, пока не поймаете совпадения как описано выше.
!Осторожно с клапанком, чистота почти безупречная! и не брать руками, не установить вверх ногами! Там есть медная шайбочка (регулировочная?), может сидеть внутри штуцера, не потеряйте (книга пишет, что нужна новая, а где взять - не пишет). Резиновое уплотнительное кольцо лучше бы поставить новое. Усилие затяжки 30 КГ (по книге). Не забудьте долить в насос масла.

Инженеры-спецы пусть простят за столь вычурное описывание процесса и не тащатся. Иные любители любого спеца могут заткнуть, не имея образований. Опыт - великое дело! Главное - руки и голова!
Удачи!

Рядные механические многоплунжерные ТНВД

Данная статья является первой в цикле, посвящённом ремонту топливной аппаратуры на нашем предприятии. Речь пойдёт о рядных многоплунжерных топливных насосах высокого давления (ТНВД) дизельных двигателей. Их история тесно связана с фирмой Роберта Боша, ведь именно она впервые применила их в автомобильных двигателях в конце двадцатых годов прошлого века.

Судовой рядный двенадцатиплунжерный ТНВД

Их история тесно связана с фирмой Роберта Боша, ведь именно она впервые применила их в автомобильных двигателях в конце двадцатых годов прошлого века. Именно поэтому систему с рядным ТНВД с механическим регулятором называют «традиционной». Её особенность в отсутствии необходимости в любых электронных системах, в неприхотливости в выборе топлива и непревзойдённой надёжности, исчисляемой десятилетиями. Недостатком является очень большой момент сопротивления насоса, который скрадывает эффективную мощность двигателя, а также серьёзнейшим недостатком является несоответствие современным нормам токсичности отработавших газов. Именно поэтому этот ТНВД устанавливают на новые автомобили, лишь в развивающихся странах, например, Индии, Китае и Бразилии. Сейчас рядные ТНВД но отечественного производства в РФ можно встретить только на машинах поступающих в армию.

Однако говорить о полном уходе «традиционной» системы пока рано, ведь ниша судовых двигателей, электрогенераторов и другой специальной техники пока прочно удерживается за двигателями с «рядниками».

Устройство системы следующее

ТВНД приводится в движение от распределительного вала двигателя с той же угловой скоростью. Насос имеет количество плунжеров (plunger – нем. «поршень») равное количеству цилиндров двигателя. Приводной вал насоса имеет кулачки, которые при вращении приводят в возвратно-поступательное движение шток топливного насоса низкого движения (ТННД) и плунжера во втулках через толкатели, при этом ход плунжеров является постоянной величиной. ТННД питает топливом впускную полость ТНВД, из которой запитывается полость над плунжером. При движении плунжера вверх топливо через нагнетательный клапан поступает в трубки высокого давления, затем в форсунки, которые распыляют его в камере сгорания автомобиля.

Но как же осуществляется изменение количества топливоподачи, ведь на разных режимах двигателю требуется разное количество топлива, а ход плунжера постоянен? Именно для этого насосу нужен центробежный регулятор. Дело в том, что плунжер ТНВД имеет специальные проточки в районе своей верхней кромки, которые находятся напротив ответных отверстий во втулке плунжера, стало быть плунжер не только перемещается вдоль своей оси вверх-вниз, он также поворачивается вокруг своей оси. И поворот на определённый градус соответствует определённой подаче. Делается это с помощью специальной рейки, расположенной вдоль насоса, ход которой и регулирует топливоподачу от нуля до максимального значения.

У фирмы Бош имеется масса механических регуляторов, таких как RQ, RQV, RQU, RQUV, RQV-K, RSV, RSUV, RSF и электронный RE. Механические регуляторы отличаются по режиму работы: всережимный и двухрежимный. При этом всережимные используются на специальной технике, где нужны постоянные обороты (суда, тепловозы, комбайны, краны, гидравлические насосы), а двухрежимные на автомобилях. Кроме этого они могут быть оснащены дополнительными устройствами коррекции, такими как: коррекция по наддуву от турбонагнетателя, коррекция по атмосферному давлению, устройство помощи при холодном запуске, устройство (в том числе и электронное) при увеличении нагрузки на холостом ходу и многими другими. Также регуляторы отличаются по скорости реакции на воздействие на педаль. К примеру, в легковых дизельных автомобилях Мерседес использовались насосы с регулятором RSF, они обеспечивали мягкий и в то же время быстрый разгон, ведь в Германии дорогой и престижный автомобиль обычно доступен людям в возрасте от 45 лет, когда от автомобиля требуется в первую очередь комфорт.

Рядные ТНВД фирмы Бош отличаются не только регуляторами и размерами. Общая для всех схема реализована по-разному. Существуют виды: тип М, тип А, тип MW, тип P, тип R, тип ZW(U), тип O (с дозирующей муфтой), тип CW, тип H.

Самым частым гостем на нашем предприятии является тип Р, так что рассмотрим ремонт рядного ТНВД на этом примере.

Как мы ремонтируем:

У каждого изделия производства фирмы Бош от лампочки и резиновой прокладки до многомиллионного стенда или холодильника есть свой каталожный десятизначный номер. Не исключение и ТНВД. Изделия дизельной группы Бош имеют номер 0 4хх ххх ххх. Таким образом каждый насос имеет свой индивидуальный номер. Зная его мы имеем всю необходимую информацию для ремонта агрегата, а именно: полную раскладку на запасные части и протокол проверки. Таким образом, мы можем гарантировать, что отремонтированный, в соответствии с нашими рекомендациями, насос будет отвечать всем предъявляемым для него заводом-изготовителем требованиям. Мы устанавливаем только оригинальные детали, поставляемые нам официальными поставщиками фирмы Роберта Боша, согласно каталогам.

Ремонт этих насосов очень трудоёмкий и требует большого количества специального инструмента, так называемых «инструментальных досок», причём для каждого типа насоса используются свои доски, для ТНВД типа Р существует четыре инструментальных доски. Помимо них есть также доски с инструментом для различных типов регуляторов.

При дефектации насоса, он разбирается полностью, при этом оцениваются правильность сборки, состояние деталей, подвижность деталей регулятора. По результатам дефектации с клиентом обязательно согласовывается сумма и сроки поставки запасных частей подлежащих замене.

Инструментальные доски для насосов типа Р

После этого насос очищается от загрязнений и моется в ультразвуковой ванне, производится сборка строго в соответствии с технологией Бош, соблюдая моменты затяжки, осевые и тепловые зазоры в рамкоах допусков.

Дизельные двигатели грузовых автомобилей и тракторов. Запасные части, регулировки и ремонт.

Принципиальная схема системы топливоподачи дизеля с одноплунжерным распределительным топливным насосом с торцевым кулачковым приводом плунжера показана на рисунке.1.


Рис.1. Схема системы топливоподачи дизеля с одноплунжерным ТНВД

1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – топливный насос; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения
свечей накаливания

Топливо из бака 11 прокачивается по топливопроводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасывается топливным насосом низкого давления и затем направляется во внутреннюю полость корпуса насоса 4, где создается давление порядка 0,2 … 0,7 МПа.

Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распределителя в соответствии с порядком работы цилиндров подается по топливопроводам высокого давления 6 в форсунки 8, в результате чего осуществляется вспрыскивание топлива в камеру сгорания дизеля.

Избыточное топливо из корпуса насоса, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливопроводам 7 обратно в топливный бак.

Смазка и охлаждения ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы насоса и форсунки.

Поскольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3-5 мкм.

Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топливе Попадание влаги во внутреннее пространство насоса может привести к выходу последнего из строя по причине образования коррозии.

Топливный насос подает в цилиндры дизеля строго дозированное количество топлива под высоким давлением в определенный момент времени в зависимости от нагрузки и скоростного режима, поэтому характеристики двигателей существенно зависят от работы насоса.

Схема и общий вид распределительного насоса ТНВД Bosch VE

Основные функциональные блоки топливного насоса Бош представляют собой:

- Роторно-лопастной топливный насос низкого давления с регулирующим перепускным клапаном.

- Блок высокого давления с распределительной головкой и дозирующей муфтой.

- Автоматический регулятор частоты вращения с системой рычагов и пружин.

- Электромагнитный запирающий клапан, отключающий подачу топлива.

- Автоматическое устройство (автомат) изменения угла опережения впрыскивания топлива.


Рис.2. Схема топливного насоса Бош

1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управления подачей топлива; 4 – грузы регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной нагрузки 7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плунжер 10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливоподкачивающий насос низкого давления


Рис.3. Общий вид распределительного ТНВД Bosch VE

а – ТНВД; б – блок высокого давления с распределительной головкой и дозирующей муфтой.

Дополнительные устройства распределительного насоса Бош

Распределительный топливный насос Bosch VE может также быть оснащен различными дополнительными устройствами, например, корректорами топливоподачи или ускорителем холодного пуска, которые позволяют индивидуально адаптировать ТНВД к особенностям данного дизеля.

Вал привода 1 расположен внутри корпуса насоса, на валу установлен ротор 17 топливного насоса низкого давления и шестерня привода вала регулятора с грузами 4.

За валом 1 неподвижно в корпусе насоса установлено кольцо с роликами и штоком привода автомата опережения впрыскивания топлива 14. Привод вала осуществляется от коленчатого вала дизеля, шестеренчатой или ременной передачей.

В четырехтактных двигателях частота вращения вала ТНВД Бош составляет половину от частоты вращения коленчатого вала, и работа распределительного насоса осуществляется таким образом, что поступательное движение плунжера синхронизировано с движением поршней в цилиндрах дизеля, а вращательное обеспечивает распределение топлива по цилиндрам.

Поступательное движение обеспечивается кулачковой шайбой, а вращательное – валом топливного насоса.

Автоматический регулятор частоты вращения включает в себя центробежные грузы 4, которые через муфту регулятора и систему рычагов воздействуют на дозирующую муфту 12, изменяя таким образом, величину топливоподачи в зависимости от скоростного и нагрузочного режимов дизеля.

Корпус топливного насоса закрыт сверху крышкой, в которой установлена ось рычага управления, связанного с педалью акселератора.

Автомат опережения впрыскивания топлива является гидравлическим устройством, работа которого определяется давлением топлива во внутренней полости насоса, создаваемым топливным насосом низкого давления с регулирующим перепускным клапаном 2.

Современные небольшие высокооборотистые дизельные двигатели требуют установки легких и компактных систем впрыска.

Распределительный ТНВД VE Bosch удовлетворяет этим требованиям путем объединения топливоподающего насоса, регулятора и устройства опережения впрыска в небольшой компактный узел. Обороты, мощность и конфигурация двигателя определяют параметры для конкретного распределительного насоса.

Распределительные насосы (называемые еще роторно-распределительными) используются на легковых и грузовых автомобилях, сельскохозяйственных машинах и стационарных двигателях.

Узлы топливного насоса Bosch

В отличие от рядного ТНВД, распределительный имеет только один цилиндр (гильзу) и один плунжер независимо от числа цилиндров двигателя.

Топливо, подаваемое плунжером, распределяется канавкой распределителя к выходным отверстиям (каналам), которое определяется числом цилиндров двигателя.


Рис.17. Рабочие группы насоса

Закрытый корпус ТНВД Бош содержит следующие функциональные группы:

- Насос высокого давления с распределителем (2): создает давление впрыска, нагнетает и распределяет топливо;

- Механический (центробежный) регулятор (3): управляет оборотами насоса и уменьшает количество нагнетаемого топлива в области управления;

- Гидравлическое устройство опережения момента впрыска;

- Топливоподающий лопастной насос (1) с клапанной регулировкой давления: подает топливо и создает давление внутри насоса;

- Устройство опережения впрыска (5): регулирует начало подачи (закрывание отверстии) в зависимости от оборотов насоса и частично в зависимости от нагрузки;

- Электромагнитный клапан отсечки топлива (4): перекрывает подачу топлива.

Конструкция и исполнение топливного насоса Бош

Вал привода распределительного насоса движется в подшипниках в корпусе насоса и приводит в движение лопастной топливоподающий насос. Роликовое кольцо расположено внутри насоса на конце приводного вала, хотя и не соединено с ним.

Вращательно-поступательное движение передается на плунжер распределителя путем пластины : кулачками (7), которая приводится в движение от входного вала и катится на роликах роликового кольца. Плунжер движется внутри головки распределителя (4), которая прикреплена болтами к корпусу насоса.

В головке распределится установлены: электрическое устройство остановки двигателя резьбовая заглушка с вентиляционным винтом и нагнетательные клапаны с их держателями.

Распределительный насос также оснащен механическим устройством отсечки топлива (8), которое остановлено в крышке регулятора.


Регулятор (2), включающий в себя центробежные грузики и втулку управления, приводится в движение приводным валом (шестерня с резиновым демпфером) через пару шестерен.

Рычажный механизм регулятора, который состоит из рычагов для управления, запуска и натяжного рычага, может поворачиваться в корпусе.

Регулятор перемещает положение втулки (кольца) управления на плунжере насоса. На верхней стороне механизма регулятора находится пружина регулятора, которая соединяется с внешним рычагом управления через вал рычага управления, который удерживается в подшипниках в крышке регулятора.

Рычаг управления используется для управления работой насоса. Крышка регулятора образует верхнюю часть распределительного насоса и также содержит регулировочный винт полной нагрузки, ограничитель перетока топлива (3) или клапан переполнения и регулировочный винт оборотов двигателя.

Гидравлическое устройство опережения впрыска (6) расположено в нижней части под прямым углом к продольным осям насоса.

На его работу влияет внутреннее давление насоса, которое, в свою очередь определяется топливоподающим лопастным насосом (5) и клапаном регулировки давления (1). Устройство опережения впрыска закрыто крошками на каждой стороне насоса.

Привод топливного насоса Bosch

ТНВД Bosch VE приводится в движение от дизельного двигателя через специальный узел привода.

Для 4-тактных двигателей насос вращается точно с половинным числом оборотов коленчатого вала двигателя, другими словами, с оборотами, равными оборотам распределительного вала двигателя.

Насос должен вращаться принудительно так, что его приводной вал синхронизирован с движением поршней двигателя.

Принудительный привод осуществляется посредством зубчатых ремней, звездочек шестерён или цепи.

Распределительные насосы поставляются для вращения по часовой и против часовой стрелки причем последовательность впрыска отличается в зависимости от направления вращения.

Выходы для топлива всегда снабжаются топливом в их геометрической последовательности и обозначаются буквами А, В, С и т.д. во избежание путаницы с нумерацией цилиндров двигателя.

Распределительные насосы используются для двигателей с числом цилиндров до шести.

DieselMotors

Полный спектр услуг по диагностике, ремонту и обслуживанию дизельной топливной аппаратуры

  • О техцентре
  • Акции
  • Виды работ
    • Компьютерная диагностика
    • Проверка (ремонт) форсунок
    • Проверка (ремонт) насос-форсунок
    • Проверка и ремонт ТНВД
    • Снятие-установка компонентов топливной системы
    • Комплексная промывка топливной системы
    • Сажевый фильтр с каталитическим покрытием
    • Система впрыска дизельного топлива насос-форсунка
    • Система дизельного впрыска Common Rail
    • ТНВД Bosch VP44. Устройство и принцип действия
    • Топливные системы насос-форсунка-трубопровод (PLD).

    Поиск по сайту

    ТНВД Bosch VP44. Устройство и принцип действия

    tnvd-Bosch-VP44-dieselmotors.by

    Общие сведения

    В системе механического впрыска дизельного топлива BOSCH VP44 форсунки открываются под действием давления создаваемым ТНВД. Момент впрыска и количество впрыскиваемого топлива также задаёт ТНВД который в свою очередь управляется электронным блоком управления. Давление впрыска, развиваемое насосами такого типа достигает 1000 бар. Такие насосы используются на моделях дизелей Opel, Audi, Ford, Nissan, BMW, Rover.

    Устройство

    sistema-vpryska-dvigatelya-dieselmotors.by

    Система непосредственного впрыска дизельного двигателя с ТНВД VP-44:

    radialno-porshneviy-raspredelitelny-tnvd-dieselmotors.by

    Радиально-поршневой распределительный ТНВД представляет собой насос впрыска с электронным регулированием, имеющий собственный блок управления. Насос создаёт давление впрыска 1000 бар. Высокое давление дизельного топлива позволяет достичь мелкодисперсного распыления топлива. Это приводит к более полному сгоранию топливно-воздушной смеси и меньшему содержанию вредных веществ в выхлопных газах.

    tnvd2-Bosch-VP44-dieselmotors.by

    tnvd3-Bosch-VP44-dieselmotors.by

    tnvd4-Bosch-VP44-dieselmotors.by

    а – для четырех или шести цилиндров; b – для шести цилинд¬ров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направля ющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления. Количество кулачков на шайбе соответствует числу цилиндров двигателя. В корпусе вала-распределителя нагнетающие плунжеры распо лож ены радиально, что и дало название этому типу ТНВД. На восходящем профиле кулачка плунжеры совместно выдавливают топливо в центральную камеру высокого давления 7. В зависимости от числа цилиндров двигателя и условий его применения существуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерами.

    tnvd5-Bosch-VP44-dieselmotors.by

    В фазе наполнения (а) на нисходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шайбы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.
    В фазе нагнетания (b) плунжеры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления. Для дозирования цикловой подачи в контур высокого давления ТНВД встроен электромагнитный клапан высокого давления 7.
    К электромагнитному клапану высокого давления по сигналу блока управления ТНВД в катушку электромагнита подается напряжение, и якорь перемещает иглу , прижимая ее к седлу . Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и называется продолжительностью подачи. Продолжительность закрытия электромагнитного клапана, определяемая блоком управления, регулирует таким образом величину цикловой подачи топлива. После оконч ания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.

    Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре. Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальн ый момент начала впрыскивания соответственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением периода впрыскивания и воспламенения при увеличении частоты вращения.

    Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольно й оси.

    Устройство опережения впрыскивания:

    tnvd6-Bosch-VP44-dieselmotors.by

    1 – кулачковая шайба; 2 – шаровая цапфа; 3 – плунжер установки угла опережения впрыскивания; 4 – подводной/отвод¬ной канал; 5 – регулировочный клапан; 6 – шиберный топливоподкачивающий насос; 7 – выход топлива; 8 – вход топлива; 9 – подвод от топлив¬ного бака; 10 – пружина управля¬ющего поршня; 11 – возвратная пружина; 12 – управляющий поршень; 13 – кольцеобразная камера гидравли¬ческого упора; 14 – дроссель; 15 – электромагнитный клапан установки момента начала впрыскивания (в закрытом положении)

    Кулачковая шайба 1 входит своей шаровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное движение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, который открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.

    Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впрыскивания с помощью этого клапана, на который непрерывно подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляющий поршень.

    Электромагнитный клапан установки момента начала впрыскивания:

    1 – седло клапана; 2 – направление закрытия; 3 – игла клапана; 4 – якорь электромагнита; 5 – катушка; 6 – электромагнит.

    Читайте также: