Трансформатор тесла самый большой

Добавил пользователь Валентин П.
Обновлено: 04.10.2024

Наверняка вы хотя бы раз краем уха слышали, что существует такая вещь, как ”катушка Теслы”. Кто-то просто не понимает, что это такое, другие думают, что это как-то связано с автомобилями Илона Маска, а третьи предполагают, что это что-то из книги о кройке и шитье. И лишь немногие по-настоящему знают, что это такое, и то, что это изобретение позапрошлого века может перевернуть весь мир энергетики, но до сих пор этого не сделало. Поговаривают, что именно это изобретение гениального Николы Теслы стало причиной ”падения Тунгусского метеорита”. Впрочем, я бы не спешил говорить о том, что катастрофа того времени была рукотворной. Сейчас катушка Теслы известна вам по красочным шоу, которые устраивают в кружках любителей физики. Помните? Там, где молнии бьют между клетками с людьми. Все это поверхностно, но что на самом деле представляет из себя катушка Теслы? Это гениальное изобретение или сплошная ”пыль в глаза”?

Катушка Теслы

Катушка Теслы интереснее, чем может показаться на первый взгляд.

Что такое катушка Теслы

Сразу скажу, что в описании этого относительно простого прибора есть несколько довольно сложных для неподготовленного человека слов. Они относятся к электрике, и большинство даже если слышало их, то не сразу поймет, что они означают. Поэтому я дам два описания. Одно из них будет обычным, с небольшим уклоном в техническую сторону, в а второе, что называется, на пальцах.

10 доказательств того, что Никола Тесла был богом науки.


Гениальный изобретатель не просто придумал катушку своего имени, но и запатентовал ее.

В основе работы приборы лежат резонансные стоячие электромагнитные волны. Сейчас поймете, как это!


Упрощенно катушка Теслы выглядит так.

На самом деле все довольно просто, если понимать принцип действия законов физики, на которых основана работа прибора, но вот, как и обещал, более простое объяснение.

Катушка Теслы простыми словами

Представьте себе маятник с тяжелым грузом. Если вводить его в движение, толкая в какой-то определенный момент в одной точке, то амплитуда будет расти по мере увеличения усилия. Но если найти точку, в которой движение будет входить в резонанс, то амплитуда будет расти многократно. В случае с маятником она ограничена параметрами подвеса, но если мы говорим о напряжении, то расти оно может чуть ли не бесконечно. В обычных условиях наблюдается рост напряжения в десятки и даже сотни раз, достигая миллионов вольт даже в далеко не самых мощных приборах.

На Марсе есть электричество, но откуда оно берется?

Пример простого объяснения знаком нам всем с детства. Помните, когда мы раскачивали кого-то на качелях? Так вот, мы же толкали качели в той точке, в которой они максимально быстро разгонялись вниз. Это и есть грубое, но в целом верное объяснение резонанса, который используется в катушке Теслы.


Резонанс может делать великие вещи. В том числе и с электричеством.

В качестве основных элементов сам Никола Тесла использовал конденсатор, который подключался к источнику питания. Именно он и питал первичную обмотку, от которой возникал резонанс во вторичной. Важно было только правильно подобрать частоту тока ”на входе” и материал для вторичной обмотки. Если они не будут соответствовать друг другу, то роста напряжения не будет вовсе или он будет крайне незначительным.

Для чего нужна катушка Теслы

К визуальным эффектам мы еще вернемся, так как они являются только иллюстрацией работы прибора, а изначально он создавался для того, чтобы передавать электрическую энергию на расстояние без проводов. Именно этим и занимался один из самых загадочных ученых в истории.

Из-за чего бьет молния и как она появляется

Это не является секретной информацией и встречается в различных документах того времени. Суть в том, что если установить в нескольких километрах друг от друга достаточно мощные катушки Теслы, они смогут передавать энергию и решать многие проблемы, а увеличение напряжения и частоты почти из ничего может позволить решить многие энергетические проблемы.

Катушка Теслы

Потенциально катушка Теслы может передавать энергию на большие расстояния.

Учитывая некоторые свойства прибора, он может даже опровергать ряд доказательств того, что создание вечного двигателя невозможно. Я уже рассказывал, как и кто пытался его создать, но в некотором роде именно катушка Теслы при определенных условиях могла бы стать одним из его компонентов.

Почему никто не развивает катушку Теслы

Сказать, что кто-то всерьез занимается вопросом развития технологии, нельзя. Может быть она не так привлекательна в промышленном применении, а может быть она нужна только военным. Точного ответа на этот вопрос нет, но именно военные много работают в этом направлении.

Все просто! Если как следует ”раскочегарить” катушку Теслы, она может спалить всю электронику на очень большом расстоянии. Даже простейшие макеты, которые делаются в домашних условиях, могут вывести из строя домашние бытовые приборы, что уже говорит о действительно мощных установках.

Катушка Теслы

Реальное применение катушки Теслы находят только в шоу, которые основаны на электрических спецэффектах. Считается, что их использование безопасно для человека, но при этом оно позволяет создавать красочные фиолетовые молнии, которые можно видеть буквально перед собой. Это очень эффектно и заставляет многих детей увлечься наукой.

Где применяются катушки Теслы

Сами катушки или их действие применяется в некоторых сферах жизни. Кроме комнат, описанных выше, созданные молнии высокого напряжения могут применяться в красочных лампах, которые можно трогать рукой, и разряд будет стремиться к ней.

Интересные и малоизвестные факты о молниях

Катушки Теслы применяются даже в косметологии.

Тесла и Тунгусский метеорит

Про Тунгусский метеорит сказано более чем много, и я сейчас не буду подробно пересказывать историю этого происшествия. Скажу только, что не все верят в метеорит, природное явление, крушение инопланетного корабля, столкновение с Землей миниатюрной черной дыры (есть и такая версия) или испытание какого-то оружия. Многие уверены, что катастрофа была связана именно с попыткой Николы Теслы передать энергию на большое расстояние.

Лично я к этой версии отношусь довольно скептически, но если ученый смог создать прибор, который мог сотворить такое, то только представьте, какой потенциал имели созданные им технологии, которые мы сейчас используем для развлечения.

Катушка Теслы

Катушка Теслы несет в себе не только красоту, но и опасность.

Прямых доказательств или явных опровержений виновности Николы Теслы во взрыве в Сибири нет. Поэтому оставим версию конспирологами или простым людям для развития фантазии.

Как сделать катушку Теслы

На самом деле было несколько некорректно расписывать, как сделать такой прибор дома самостоятельно, так как он может быть очень опасен как для людей, так и для домашней техники. Достаточно просто знать, что это возможно и на YouTube полно роликов о том, как приобщиться к этому явлению.

Добавлю только, что для создания миниатюрной катушки достаточно обзавестись несколькими вещами, которые можно найти в гараже более-менее запасливого ”самоделкина”.

Катушка Теслы

Сделанная в домашних условиях катушка Теслы может даже зажигать лампочки рядом с ней.

По сути вам понадобится только источник питания, небольшой конденсатор, маленькая катушка проводника для первичной обмотки, пара сотен метров тонкой медной эмалированной проволоки для вторичной обмотки, диэлектрическая труба для ее намотки и все.

Если вы решили сделать что-то подобное, то в каждом ролике более точно расскажут, что нужно для эксперимента. Но помните, что без специальной подготовки это может быть смертельно опасно.

Самая большая действующая катушка Тесла

Ну и канонiчное "Kirov reporting" заставляющее откладывать кирпичей и в бешеных темпах отстраивать ПВО.

Мамуля жжёт.

Маме моей 71 год. Периодически натыкалась в её маленьком городке на стаи бездомных собак. Ну и что бы защищаться могла от свор этих бездомных собак купил ей струйный газовый баллончик "Шпага".
Сегодня звонИт:
- На рынок пошла вчера.
Цыганка меня под руку поймала :
- Погадаю тебе, бла-бла-бла.
Я ей говорю:
- Женщина, отойдите от меня!

Тут их толпа налетела: и бабы из Будулая в юбках и мелкие, меня крутят, орут что-то и сумку всё пытаются вырвать с кошельком. Ну, я думаю, как есть - собаки! Баллончик этот вытащила из сумки, глаза зажмурила, вздохнулась, ну и их перекрестила струёй из баллона этого два раза!

Ой, ты знаешь, а помогло ведь! Разбежались, ироды! Орали только громко и пахло неприятно потом! Наверное от собак тоже поможет!

Обожаю мою мамулю.

Мудро однако

В Японии тяжело быть женой главы местной администрации.
Всему виной их геологические особенности.

В Японии часто случаются стихийные бедствия. И жители остаются без своих домов. Приходится жить в уцелевших школьных спортзалах, сборно-щитовых домах и т. д.
Бывает, что и в палаточных городках.

По заведенной традиции, в таких случаях глава местной администрации должен с женой временно переселиться в зону бедствия. И должен выбрать самое худшее место (если стоит выбор между мотелем и палаткой, он должен перебраться в палатку). Туда же должен перебраться необходимый минимум чиновников.

И сидит бедолага японаХоким с женой в палатке. В спальном мешке спят. Жена газовый баллон притащит, лапшу варит. Хоким , сидя верхом на перевернутом ведре, совещания с МЧС проводит. А кругом красота: свежий воздух, океан.

И долго ему на ведре сидеть? До тех пор, пока не будет решен вопрос с последним пострадавшим. Сэнсэй покидает палаточный городок последним.

В Японии вопросы пострадавших решаются очень быстро. И дело не в какой-то японской эффективности. Просто в древности кто-то мудро решил: на место бедствия посылать чиновника обязательно вместе с женой.

Потому что сам чиновник, один, может долго в палатке жить: сакэ притащит, начнет шашлыки жарить, подруг подтянет, рыбалку устроит. Устроит себе отпуск на природе. Оттопырится на славу. Это уж как принято (думается, многие бы не отказались неделю-другую пожить в палатке у океана).

А вот жена не даст такого счастья. Она своего мужа с потрохами съест: надоело в палатке торчать, дети ждут, быстрей заканчивай дела, домой надо. И чиновник, вздыхая, быстро решает вопросы.

Очень мудрый человек жил в древности. Он знал, что посылать одного чиновника - бесполезно. Только с женой. Хорошо знал жизнь и людей.

Питер, Питер.

Питер, Питер. Человек-Паук, Мемы, Картинки, Юмор

Питер, Питер. Человек-Паук, Мемы, Картинки, Юмор

Питер, Питер. Человек-Паук, Мемы, Картинки, Юмор

Представители негроидной расы после того как исчезнут белые угнетатели)

Представители негроидной расы после того как исчезнут белые угнетатели)


Общественные бассейны vs яжмамки

Общественные бассейны vs яжмамки


Бывает.

Забавный случай произошёл со мной.

Сменили квартиру. Собственно и в "старом" доме соседей почти не знали, а в новом и подавно. "Кто этот человек? Он точно, в нашем доме живёт? Х. з." Впрочем, как везде. Разбежались по коробкам - и не троньте меня.

Возвращаюсь, как-то, с прогулки с собакой, а на этаже меня встречает померанский шпиц. Что характерно, абсолютно неагрессивный. Обнюхался с моей сукой и попытался проникнуть вместе с нами в квартиру. "Э, нет, брат. Пойдём твоих хозяев искать". Накормил свою и вышел на лестницу. Шпиц встретил меня, виляя хвостом, однако, наотрез отказался спускаться со мной по лестнице. Пришлось взять на руки.

Так мы и спускались. На ручках. Собаку никто не признавал и только пожимали плечами. Наконец, на 5 этаже, старичок сказал, что похож на собаку из 132 квартиры.

Спустился ещё на пару этажей и позвонил в 132-ю.

Облом-с. Никто не открыл, но, чу! За дверью слышно какое-то движение! Ещё раз звоню. Звонок еле слышен. Никто не открывает, но движение - точно есть! "эге, брат! Это же жулики!", - промелькнуло у меня в голове - "Обносят квартирку, а собаку на лестницу выкинули, чтобы лаем не привлекла внимание.

Бодаться с неизвестным количеством домушников? Я не Чак Норрис. Значит, что? Звоним 102"

- Здравствуйте, только не сочтите меня идиотом, и выслушайте до конца. Нашёл в подъезде собаку, путем опроса соседей, вроде бы, выяснил квартиру её хозяев. Но, вот незадача: на звонки в дверь никто не открывает, хотя за дверью слышно движение.", - и озвучил свою версию о домушниках.

К чести диспетчера, меня выслушали внимательно, и пообещали прислать наряд.

Наряд прибыл буквально через 10 минут. По полной форме. С АКСУ и в брониках.

Полицейский вдавил звонок, прислушался. После чего принялся долбить в дверь кулаком. Через минуту дверь открылась и появилась заспанная физиономии молодой женщины.

-Здравствуйте. Вы здесь проживаете?

- Можно Ваш паспорт посмотреть?

- Вы собачку не теряли?

- Ой! Стёпа! Ты, как тут очутился? Как же так! С детьми гуляла, и он с нами. Это что ж, я тебя на лестнице забыла?

В общем, все завершилось счастливо, я извинился перед полицейскими, что сдёрнул их на такую фигню они заверили меня, что если бы такой фигни было бы побольше, они бы не возражал.

Доберман схватил годовалого ребенка зубами и спас его от смерти

В австралийском городе Атертон, штат Квинсленд, доберман схватил зубами годовалого ребенка и спас его от ядовитой змеи. Об этом сообщает портал Bored Daddy.

Кэтрин Свилличич взяла собаку по кличке Хан из приюта. Она знала, что с ней жестоко обращались прошлые хозяева — когда добермана забрали, у него были переломаны ребра. Австралийка решила, что Хан станет хорошим другом для ее годовалой дочери по имени Шарлотта. Собака и ребенок действительно сразу поладили.

В начале августа Хан начал вести себя странно. Кэтрин почувствовала, что он чем-то обеспокоен, но не могла понять, в чем дело.

Затем она увидела, как пес подбросил девочку, схватил ее за памперс и перебросил через себя.

Женщина испугалась за дочь и поспешила забрать ее у собаки. Тогда она посмотрела вниз и увидела мулгу — смертельно ядовитую змею, которая проползла по тому же месту, где за несколько секунд до этого сидела Шарлотта.

Девочка могла бы погибнуть от укуса змеи, если бы не быстрая реакция Хана. Однако рептилия укусила собаку. Семья срочно отвезла питомца к ветеринару, где ему вкололи противоядие. Пес выжил. После этого случая в семье его считают героем.

"Кунг-Фу" не оценили.

"Кунг-Фу" не оценили.


Ресничка

Ресничка

Когда первый стоишь на светофоре, но его не видно из салона

Когда первый стоишь на светофоре, но его не видно из салона


Другое дело

Другое дело

Ожирение vs бодипозитив

Ожирение vs бодипозитив


Адовое блюдо

Адовое блюдо Борщ, Мат, Скриншот, Комментарии на Пикабу, Батин суп


К нам хочет вселиться посторонний, отсидевший за убийство, человек

Трансформатор тесла принцип работы


Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка тесла
катушка тесла

Принцип действия трансформатора Тесла похож на работу обычного трансформатора. Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

схема катушки тесла

трансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.


колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали и конструкции трансформатора Тесла

конструкция трансформатора тесла

Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

alt="первичные обмотки трансформатора тесла" width="300" height="71" />
первичные обмотки трансформатора тесла

Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!


Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

трансформатор тесла схема

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3. На транзисторах.

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Пошаговое объяснение процесса сборки и запуска одного из самых мощных трансформаторов Тесла в России. Конструктор: Блотнер Борис

Как сделать катушку тесла своими руками?

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

катушка тесла своими руками

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.
  3. Вторичный контур.

Составные части

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух — образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:

  1. Для питания потребуется 12 – 19 В постоянного напряжения. Подойдёт машинный аккумулятор, зарядное устройство от ноутбука или понижающий трансформатор с диодным мостом, для получения постоянного тока.
  2. Найдём детали для первичного контура:

Вторичный контур

После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

простейшая схема

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Подключение транзистора

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Мощная катушка Тесла

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

Схема трансформатора Тесла

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

«Электрум»: самая большая катушка Тесла в мире (Новая Зеландия)

DSC06147a-Eric-Orr-Tesla-Coil_Gibbs-Farm


Катушка сумасшедшего гения Никола Тесла всегда была неотъемлемым символом безумных ученых. Самая большая катушка Тесла в мире находиться в новозеландском городе Каукапакапа. Примечательно, что возведена она была отнюдь не сумасшедшим ученым, и не фильммейкерами, а ценителями искусства.

zap

Гигантская катушка под названием «Электрум» имеет 4 этажа, а общая длина сооружения составляет больше одиннадцати метров. Данный арт-проект был осуществлен по инициативе выдающегося арт-мецената Алана Гибсона, который установил гигантскую катушку на своей ферме. Автором и главным архитектором достопримечательности выступил Эрик Ор, в то время как техническая сторона проекта полностью была положена на инженера высоких напряжений Грэга Лея. Примечательно, что катушка Томсона может подавать напряжение до 3 миллионов вольт, чего вполне достаточно, чтобы вырвать электроны с молекул воздуха.

Electrum-Fires

Наибольше впечатлений получают те, кому удастся посидеть в сферической клетке на самом верху катушки. Однако, как правило, место уже занято инженером Грэгом Леем, который любит наблюдать за разрядом гипервысокой мощности. Дуги, которые отходят от катушки, мгновенно бы убили любого человека, однако сферическая клетка Фарадея надежно защищает Лея.

eric-orr-electrum-gibbs-farm-tesla-coil-2

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Для тех, кому не терпится соорудить нечто необычное, что поразит окружающих, и сделать это своими руками – трансформатор Тесла будет идеальным вариантом. Процесс конструирования увлекает, а сочетание сразу нескольких физических эффектов в одном относительно простом устройстве приводит в восторг и любителей, и профессионалов.

Несмотря на простоту устройства, смастерить теслу не так уж просто. Принцип трансформатора основан на катушках: первичка с малым количеством витков, которая создает искровой контур, и вторичная обмотка, представляющая собою прямую катушку провода. Резонанс частот колебания обмоток вызывает высокое переменное напряжение между двумя концами катушки.

Работа трансформатора тесла

Как правильно называть устройство

Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как:

  1. Трансформатор Тесла.
  2. Катушка Тесла.
  3. Тесла.

Также существуют сленговые названия трансформатора Тесла, некоторые из них:

  1. Катуха (Котуха).
  2. Койл.

Часто трансформатор называют его типом – СГТЦ, ССТЦ и так далее.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Принцип работы

Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

Катушка тесла

Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Аналогия с качелями

Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.

Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).

Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.

Основные виды катушек

Как выглядит тесла

Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ).

С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла.

Типы катушек принято называть из английских аббревиатур. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода. Самые распространенные типы катушек тесла рассмотрим ниже.

SGTC (СГТЦ, Spark Gap Tesla Coil)

Трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.

VTTC (ВТТЦ, Vacuum Tube Tesla Coil

Трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.

SSTC (ССТЦ, Solid State Tesla Coil)

Трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой, может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).

Solid State Tesla Coil катушка

DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil)

Трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше, чем у SGTC, а управляемость немногим хуже, чем у SSTC.

Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.

Основные детали катушки

Несмотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажем о основных деталях теслы сверху вниз.

Основные детали трансформатора тесла

Тороид

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий. Выполняет три функции:

  1. Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
  2. Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
  3. Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Вторичка

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на тесле, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Также в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи. Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

Заземление

Очень важная деталь теслы. Очень часто задают вопрос – куда же бьют стримеры? Отвечаем на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно.

Теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Область применения

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В таблице ниже представлены эффекты, возникающие во время работы трансформатора тесла.

Эффекты от трансформатора Тесла

В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Схема для самостоятельной сборки

В данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить. Начнем с МОТов.

Такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению.

Схема самодельной сборки теслы

Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

Моты на самодельную теслу

У всех МОТов «первичка» намотана внизу, «вторичка» сверху. Делается это для хорошей изоляции обмоток.

На «вторичке», а иногда и на «первичке» намотана накальная обмотка магнетрона, около 3,6 вольт.

Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты.

Основное их назначение — замкнуть на себя часть создаваемого «первичкой» магнитного потока.

Таким образом ограничить магнитный поток через «вторичку» и её выходной ток на некотором уровне.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!).

Фильтр для самодельной теслы

Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты.

В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Искровик, который нужен для коммутации питания и возбуждения колебаний в контуре.

Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание!

искровик для самодельного трансформатора

Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дроселей — когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью.

Наконец-то очередь дошла и до самого трансформатора Теслы: первичная обмотка состоит из 7-9 витков провода очень большого сечения.

Впрочем, подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться.

Катушка тесла

На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) .

Тор можно изготовить из вентиляционной гофры. На этом все. Помните о безопасности и желаем удачи в самостоятельной сборке.

Заключение

Читайте также: