Zu 12h hummer схема

Обновлено: 02.07.2024

Zu 12h hummer схема

интересные РАДИОСХЕМЫ самодельные

  • ELWO
  • 2SHEMI
  • БЛОГ
  • СХЕМЫ
    • РАЗНЫЕ
    • ТЕОРИЯ
    • ВИДЕО
    • LED
    • МЕДТЕХНИКА
    • ЗАМЕРЫ
    • ТЕХНОЛОГИИ
    • СПРАВКА
    • РЕМОНТ
    • ТЕЛЕФОНЫ
    • ПК
    • НАЧИНАЮЩИМ
    • АКБ И ЗУ
    • ОХРАНА
    • АУДИО
    • АВТО
    • БП
    • РАДИО
    • МД
    • ПЕРЕДАТЧИКИ
    • МИКРОСХЕМЫ
    • ВОПРОС-ОТВЕТ
    • АКУСТИКА
    • АВТОМАТИКА
    • АВТОЭЛЕКТРОНИКА
    • БЛОКИ ПИТАНИЯ
    • ВИДЕОТЕХНИКА
    • ВЫСОКОВОЛЬТНОЕ
    • ЗАРЯДНЫЕ
    • ЭНЕРГИЯ
    • ИЗМЕРЕНИЯ
    • КОМПЬЮТЕРЫ
    • МЕДИЦИНА
    • МИКРОСХЕМЫ
    • МЕТАЛЛОИСКАТЕЛИ
    • ОХРАННЫЕ
    • ПЕСОЧНИЦА
    • ПРЕОБРАЗОВАТЕЛИ
    • ПЕРЕДАТЧИКИ
    • РАДИОБАЗАР
    • ПРИЁМНИКИ
    • ПРОГРАММЫ
    • РАЗНЫЕ ТЕМЫ
    • РЕМОНТ
    • СВЕТОДИОД
    • СООБЩЕСТВА
    • СОТОВЫЕ
    • СПРАВОЧНАЯ
    • ТЕХНОЛОГИИ
    • УСИЛИТЕЛИ

    Здравствуйте форумчане,новую ветку создавать не хочется,вопрос по зарядному шуруповёрта HAMMER ZU12H,стабилитрон с маркировкой С105Т,может кто владеет данными или чем заменить,а то не гуглится чего-то,фото прилагаю,со схемой тоже проблема Есть мысль,что он на 10В,но в сомнениях.
    Идёт на базу ключа NDF06N60ZG через транзистор,параллельно с ним резистор 68кОм,целый.









    Добавлено (06.12.2013, 00:48)
    ---------------------------------------------
    А может быть и диод,просто он ушёл в КЗ.

    Добавлено (18.12.2013, 21:28)
    ---------------------------------------------
    Вопрос снимаю,обошлись легким испугом,поставили FR207,спасибо за внимание,если оно было

    У кого есть схема ЗУ HAMMER ZU12H или хотя бы фото целой платы? Принесли в ремонт, на плате в чёрную выгорели несколько деталей, поиск схемы к нему ничего не дал. Сгоревший полевик- NDF06N60ZG.
    Фото ЗУ:

    Конструкция зарядного устройства от шуруповёрта

    Зарядное устройство

    Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

    Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

    Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

    Схема зарядного устройства от шуруповёрта

    Печатная плата зарядного устройства (CDQ-F06K1).

    Печатная плата зарядного устройства

    Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

    Трансформатор GS-1415 от зарядного устройства

    Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

    Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

    При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

    Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

    Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

    Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

    Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

    Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

    Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

    Сменный аккумулятор.

    Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

    Сменный аккумулятор 14,4V

    На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

    Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

    Никель-кадмиевый элемент (Ni-Cd)

    Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

    Датчик температуры

    Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

    Алгоритм работы схемы довольно прост.

    При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

    При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

    После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

    Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

    Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

    Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

    Зарядная характеристика Ni-Cd аккумуляторов

    На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

    Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

    Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

    Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

    Возможные неполадки зарядного устройства.

    Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

    Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

    Зарядное устройство шуруповёрта Интерскол в разобранном виде

    В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

    Меняем пробитый стабилитрон

    После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

    Проверка зарядного устройства после ремонта

    Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

    Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

    Зарядное для шуруповерта схема

    Зарядное устройство для шуруповёрта на микроконтроллере

    Схема собранна для корректной зарядки аккумуляторов шуруповёрта, вся схема умещается в штатный корпус, имеется световая и звуковая сигнализация, начала и окончания заряда, схема собрана на основе PIC12F629.

    shema_zaryadnogo_shurupoverta (4)

    После включения включаются и гаснут оба светодиода, при этом звучит сигнал, (тест индикации и звука). Затем начинает мигать красный светодиод, когда светодиод горит идёт зарядка, когда погашен контроль напряжения на аккумуляторе.

    После достижения напряжения полного заряда на аккумуляторе,перестает мигать красный светодиод и включается зелёный, при этом звучит сигнал, сообщающий о том что зарядка окончена. Уровень напряжения полного заряда устанавливаетя переменным резистором.

    Что необходимо сделать для зарядки 14 в аккумуляторов? Подать на вход 15-16 вольт, и установить переменным резистором порог срабатывания отключения зарядки при 14,4 вольт.

    shema_zaryadnogo_shurupoverta (5)

    Зарядное устройство для дрели-шуруповерта

    Схема выдает напряжение 18 вольт. Если заряжать аккумуляторы на 14.4 вольт, нужно будет подобрать резистором зарядный ток.

    Схема импульсного разрядно-зарядного устройства Ni-Cd аккумуляторов для шуруповёрта

    shema_zaryadnogo_shurupoverta (3)

    Зарядное устройство представляет собой трансформаторный, не стабилизированный источник питания, ограничение тока заряда осуществляется за счет насыщения трансформатора. Напряжение на выходе трансформатора примерно 14V.

    Очень простое ЗУ для шуруповерта

    shema_zaryadnogo_shurupoverta (1)

    А это вариант схемы простейшего зарядного устройства для шуруповерта, когда не хочется усложнять конструкцию лишними радиоэлементами. Те, кто хоть немного разбираются соберут данную схему очень быстро. По крайней мере данное зарядное устройство более простое и удобное в отличии от штатных. Естественно, что речь идет о дешевых моделях. В этой схеме регулировка зарядного тока АКБ производится резистором R10.

    Hammer zu 12h схема

    Шуруповерт – незаменимый инструмент, но обнаруженный недостаток заставляет подумать о том, чтобы внести кое-какие доработки и улучшить схему его зарядного устройства. Оставив шуруповерт зарядиться на ночь, автор этого видео блогер AKA KASYAN наутро обнаружил нагрев акб непонятного происхождения. Притом нагрев был достаточно серьезным. Это не нормально и резко сокращает срок службы аккумулятора. К тому же опасно с точки зрения пожаробезопасности.

    Разобрав зарядное устройство, стало ясно, что внутри простейшая схема из трансформатора и выпрямителя. В док-станции всё было еще хуже. Индикаторный светодиод и небольшая схема на одном транзисторе, которая отвечает только за срабатывание индикатора, когда в док-станцию вставлен акб.
    Никаких узлов контроля заряда и автоотключения, только блок питания, который будет заряжать бесконечно долго, пока последний не выйдет из строя.

    Поиск информации по проблеме привел к выводу, что почти у всех бюджетных шуруповёртов точно такая же система заряда. И лишь у дорогих приборов процессор на управлением реализована умные системы заряда и защит как на самом заряднике, так и в аккумуляторе. Согласитесь, это ненормально. Возможно, по мнению автора ролика, производители специально используют такую систему для того чтобы аккумуляторы быстро выходили из строя. Рыночная экономика, конвейер дураков, маркетинговая тактика и прочие умные и непонятные слова.

    Давайте доработаем это устройство, добавив систему стабилизации напряжения и ограничения тока заряда. Аккумулятор на 18 вольт, никель-кадмиевый с емкостью в 1200 миллиампер часов. Эффективный ток заряда для такого акб не более 120 миллиампер. Заряжаться будет долго, но зато безопасно.

    Давайте сначала разберемся, что нам даст такая доработка. Зная напряжение заряженного аккумулятора, мы выставим на выходе зарядника именно это напряжение. И когда аккумулятор будет заряжен до нужного уровня, ток заряда снизится до 0. Процесс прекратится, а стабилизация тока позволит заряжать аккумулятор максимальным током не более 120 миллиампер независимо от того, насколько разряжен последний. Иными словами мы автоматизируем процесс заряда, а также добавим индикаторный светодиод, который будет гореть в процессе заряда и погаснет в конце процесса.

    Все нужные радиодетали можно приобрести дешево – в этом китайском магазине.
    Схема узла.

    Итак, мы знаем, что по схеме будет протекать ток около 120 миллиампер. Это не очень большой ток, поэтому на микросхему не нужно устанавливать теплоотвод. Работает такая система достаточно просто. Во время зарядки образуется падение напряжения на резисторе r1, которого хватит для того, чтобы высвечивался светодиод и по мере заряда ток в цепи будет падать. После некоторой величины падения напряжения на транзисторе будет недостаточное светодиод попросту потухнет. Резистор r2 задает максимальный ток. Его желательно взять на 0,5 ватт. Хотя можно и на 0,25 ватт. По данной ссылке можно скачать программу для расчёта микросхемы.





    Данный резистор имеет сопротивление около 10 ом, что соответствует зарядному тока 120 миллиампер. Вторая часть представляет из себя пороговый узел. Он стабилизирует напряжение; выходное напряжение задается путем подбора резисторов r3, r4. Для наиболее точной настройки делитель можно заменить на многооборотный резистор на 10 килоом.
    Напряжение на выходе не переделанного зарядного устройства составляло около 26 вольт, при том, что проверка осуществлялась при 3 ваттный нагрузки. Аккумулятор, как уже выше было сказано, на 18 вольт. Внутри 15 никель-кадмиевых банок на 1,2 вольта. Напряжение полностью заряженного аккумулятора составляет около 20,5 вольт. То есть на выходе нашего узла нам нужно выставить напряжение в пределах 21 вольта.



    Теперь проверим собранный блок. Как видно, даже при закороченном выходе ток не будет более 130 миллиампер. И это независимо от напряжения на входе, то есть ограничение тока работает как надо. Монтируем собранную плату в док-станцию. В качестве индикатора окончания заряда поставим родной светодиод док-станции, а плата с транзистором больше не нужна.
    Выходное напряжение тоже в пределах установленного. Теперь можно подключить аккумулятор. Светодиод загорелся, пошла зарядка, будем дожидаться завершения процесса. В итоге можно с уверенностью сказать что мы однозначно улучшили эту зарядку. Аккумулятор не нагревается, а главное его можно заряжать сколько угодно, поскольку устройство автоматически отключается, когда аккумулятор будет полностью заряжен.



    Правда до этого момента он безотказно отработал примерно пять лет.
    Пришлось идти в магазин и пробовать подобрать новый инструмент для кручения. Глаза естественно разбежались в разные стороны от обилия моделей. Что нужно от шуруповёрта я уже знал , поэтому выбор был остановлен на этой модели Packard Spence (Паккард Спэнс). Всеми параметрами он мне полностью подходил и в руке лежал очень удобно.
    Шуроповерт PSCD 14 АD:



    Измерил ток заряда, получилось около 50мA. Проверил элементы, все были исправны. Схема оказалась зарядником SKIL, SPARKY и т.д и т.п моделей.


    Пробовал спросить на форуме Кота как она (схема) работает но ответа не получил .
    Кстати правильно схема выглядит вот так:

    Но это выяснилось намного позже.
    Процесс поиска приемлемой схемы занял некоторое время. Хотелось настоящий контроллер заряда.
    МАХ был отброшен по причине стоимости. ТЕА 1104 по причине дефицитности. Дискретные схемы из-за размеров. Выбор пал на МС33340 от Мотороллы.

    Дальше всё обыденно и рутинно. Развёл плату под свой размер.




    При первой попытке заряда вылезли некоторые нюансы. Посмотрим на картинку из даташита:

    Обратите внимание на формулы внизу рисунка.
    Из-за некоторого несоответствия мой контроллер заряжал аккумулятор током 170 ма и только 15 минут. После чего прекращал заряд.
    Победить окончательно помогли заграничные камрады. Они придумали калькулятор для расчёта. Нумерация резисторов делителя Vsem соответствует рисунку, на котором изображён 78L12.
    В моём случае:

    Разделы сайта

    DirectAdvert NEWS

    Друзья сайта

    ActionTeaser NEWS

    Статистика

    Зарядные устройства для аккумуляторов шуруповертов.

    Что делать, если штатный зарядник недозаряжает аккумуляторы или совсем вышел из строя? А ведь бывает и так, что ремонтировать вышедшее из строя ЗУ становится не целесообразным… Ниже мы представим вам несколько вариантов не сложных схем, они легки в повторении, и собрать их сможет даже начинающий радиолюбитель.

    Первый вариант устройства собран на распространенных деталях отечественного производства. Рассмотрим схему, изображенную на рисунке 1.

    Понижающий трансформатор Тр1 220/13 вольт с током вторичной обмотки не менее 1 ампера. Если не найдете готового трансформатора, и вам нужно будет его перематывать, прочитайте статью “Простой расчет понижающего трансформатора.” , в ней все подробно расписано.

    Напряжение, снимаемое с вторичной обмотки, поступает на диодный мост, выпрямляется и сглаживается на емкости С1. Учтите, что на С1 уже будет не напряжение вторички (13В), а 13*√2 , это примерно 18,4 вольта. Это напряжение и приходит на интегральный стабилизатор DA1.

    Резистор R4 служит регулировкой прикладываемого к заряжаемому аккумулятору напряжения, т.е. если вы знаете, что напряжение полностью заряженного вашего аккумулятора составляет 14,2 вольта, значит на выходе ЗУ и следует установить такое напряжение.
    Резистор R3 выполняет роль датчика тока заряда. R2, включенный в параллель R3, регулирует уровень ограничения тока заряда, т.е. ток заряда должен быть 0,1 от емкости аккумулятора.

    Мощность, которая выделяется на R3 равна 〖Iзаряда〗^2 • R3 = 〖1,5〗^2 • 1 = 2,25Вт, так что можно применить МЛТ-2 1Ом, но при этом Iзаряда надо малость уменьшить. Вообще данная схема является стабилизатором напряжения с ограничением по току нагрузки. На первом этапе аккумулятор заряжается стабильным током, потом, когда ток заряда станет меньше величины тока ограничения, аккумулятор будет заряжаться уменьшающимся током до напряжения стабилизации микросхемы DA1.


    Датчиком зарядного тока для индикатора HL1 служит диод VD2. В этом случае светодиод HL1 будет индицировать наличие тока вплоть до ≈ 50 миллиампер. Если в качестве датчика тока использовать все тот же R3, то светодиод будет гаснуть уже при токе ≈0,6 ампер, т.е. судя по погасшему светодиоду мы судили бы, что наступил конец зарядки аккумулятора, но он окажется заряженным не полностью.

    Печатная плата зарядного устройства:


    Этим устройством можно заряжать и шестивольтовые аккумуляторы. Кстати можно прикинуть, возможно ли заряжать аккумуляторы с напряжением 1,25В. Напряжение на входе стабилизатора DA1 — 20В, ток заряда допустим — 1,5А. первоначальное напряжение на аккумуляторе равно одному вольту, значит, в этом случае на микросхеме упадет 20В — 1В = 19В. При этом на ней выделится мощность равная U•I = 19В • 1,5А = 28,5Вт. Максимально допустимая мощность рассеивания для КР142ЕН12А равна 30Вт. Т.е. при условии применения соответствующего радиатора возможна зарядка и отдельного аккумуляторного элемента с напряжением 1,25В.

    Для начала хочу напомнить об уникальном схемном решении, предложенном когда то фирмой Дженерал Электрик. Это схемное решение является регулятором напряжения и тока независимо, т.е. независимая регулировка.

    Ниже представлены схемы зарядного устройства для бытового автономного инструмента на аккумуляторах 14.4V. Ток заряда устанавливается подстроечным резистором. На Рас.2 представлена добавка, где можно регулировать и напряжение заряда. Схемное решение проверено .



    Источник питания устройства не стабилизированный, состоит из трансформатора T1, диодов VD1-VD4 и сглаживающего конденсатора C1.

    Описание работы устройства.

    Когда ЗУ отключено от сети и АКБ отключена тоже, конденсаторы C3, C4 разряжены, питание на микросхему DD1 не подаётся. Если подключить устройство к сети или установить аккумуляторную батарею, то на вывод 16 микросхемы DD1 будет подано питание. Поскольку конденсатор C4 разряжен, то на выводы 5 и 9 микросхемы DD1 будет подан высокий уровень, который вызовет сброс счётчиков. На выходе 10 микросхемы DD1 будет низкий уровень. Транзистор VT1 будет закрыт, и никак не будет влиять на работу стабилизатора тока заряда. Транзистор VT4 будет тоже закрыт и индикатор HL2 гореть не будет. Если аккумулятор подключен, то через него потечёт зарядный ток и загорится индикатор HL1. Диод VD11 будет также закрыт, и не будет влиять на работу генератора микросхемы DD1. Если напряжение питания в норме, то диод VD10 будет тоже закрыт. Генератор импульсов микросхемы начнёт работать. Через некоторое время конденсатор C4 зарядится и на входах 5 и 9 микросхемы DD1 установится низкий уровень, который разрешит работу счётчиков. Начнётся отсчёт времени заряда.

    После того, как пройдёт время равное 1277952 периодам колебаний генератора, на выходе 10 микросхемы DD1 появится высокий уровень напряжения. Это напряжение через диод VD11 попадёт на вход 12 микросхемы DD1 и генератор остановится. Этот же высокий уровень откроет транзисторы VT1 и VT4. Через открытый транзистор VT1 выход ADJ микросхемы DA1 окажется соединённым с общим проводом, что приведёт к выключению стабилизатора тока заряда. Индикатор HL1 погаснет, и загорится индикатор HL2, это будет означать, что процесс заряда закончен. В этом состоянии устройство может находиться неограниченно долго. Если в этом состоянии пропадёт напряжение в сети, то микросхема DD1 перейдёт на питание от заряженного аккумулятора, и может питаться от него примерно в течение недели. Если напряжение в сети появится снова, то перезапуска таймера не произойдёт. Микросхема просто перейдёт опять на питание от сети и сохранит своё состояние.

    Если напряжение в сети пропадёт во время зарядки аккумулятора, то транзистор VT3 закроется, высокий уровень напряжения с его коллектора через диод VD10 попадёт на вход 12 микросхемы DD1, и остановит работу генератора. Отсчёт времени заряда прекратится. Микросхема DD1 перейдёт на питание от заряженного аккумулятора. Если напряжение в сети появится снова, то транзистор VT3 откроется, и отсчёт времени заряда продолжится.

    Конструкция и детали.

    Микросхему DD1 необходимо установить на радиатор, например из алюминиевой пластины. Печатная плата не разрабатывалась. Монтаж был сделан проводом МГТФ на универсальной плате, которой была придана форма, похожая на ту плату, которая стояла в зарядном устройстве раньше.


    Установить конденсатор C5 ёмкостью 0,1 мкф. Установить частоту генератора, исходя из требуемого времени заряда. Частота определяется следующим образом. Например, нам требуется время заряда 6 часов 45 минут. Это будет 6*3600 + 45*60 = 21600 + 2700 = 24300 секунд. Высокий уровень появится на выходе 10 микросхемы DD1 через 1277952 периодов. Один период равен T = 24300/1277952 = 0,01901 секунды, что соответствует частоте генератора 52,6 Гц. Частоту генератора следует смотреть на выводе 11 микросхемы DD1. На этом выводе сигнал с частотой генератора, поделённой на 32 (52.6/32 = 1,64 Гц), и период, соответственно 32*T = 32*0,01901 = 0,608 секунды. Если есть частотомер, то подстроечным резистором R13 надо установить требуемое значение. Если частотомера нет, то к выводу 11 микросхемы DD1 можно подключить точно такой же каскад на транзисторе со светодиодом, какой используется для индикации окончания заряда (транзистор VT4). Светодиод будет мигать с частотой 1,64 Гц. По секундомеру установить частоту, чтобы было 60/0,608 = 98 вспышек в минуту. Если мигающий светодиод не действует Вам на нервы, то его можно оставить и в готовом устройстве (типа, тикает! спасайся кто может!).

    Проверить работу цепи контроля напряжения питания (транзистор VT3). При уменьшении напряжения питания до величины напряжения стабилизации стабилитрона VD9, транзистор VT3 должен закрыться и остановить генератор.
    Проверить устройство в реальном времени с резистором вместо аккумулятора.
    Установить аккумулятор и проверить, как ведёт себя устройство при отключении электроэнергии в режиме зарядки и в режиме, когда зарядка завершена. Таймер не должен перезапускаться.

    Работа с устройством.

    Подключить аккумулятор к устройству. Включить устройство в сеть. Можно и наоборот. Сначала включить устройство в сеть, а потом подключить аккумулятор. Должен засветиться индикатор HL1. Начнётся отсчёт времени. Надо помнить, что отсчёт времени идет, когда устройство подключено к сети, даже если аккумулятор не установлен.

    Примерно через 7 часов, индикатор HL1 должен погаснуть, а индикатор HL2 должен засветиться, сигнализируя об окончании зарядки.
    Чтобы перезапустить таймер и начать процесс зарядки сначала, надо одновременно отключить аккумулятор и отключить устройство от сети. Подождать не менее 1 минуты, и включить всё снова.


    Понравилась новость? Не забудь поделиться ссылкой с друзьями в соцсетях.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Срок службы механической части аккумуляторного шуруповерта намного превышает период эксплуатации батареи и зарядного устройства. В случае с выходом из строя АКБ особой альтернативы нет. Аккумулятор подлежит замене, попытки восстановления далеко не всегда заканчиваются удачно и длительного эффекта не дают. Вышедшее из строя (или утерянное) зарядное устройство можно заменить самодельным блоком.

    Принцип работы зарядного устройства

    Зарядное устройство предназначено для пополнения энергией аккумуляторной батареи (или единичного элемента). Происходит это посредством пропускания постоянного (или импульсного однополярного) тока через АКБ. В гальваническом элементе (батарейке) химическая реакция, в результате которой возникает ЭДС, происходит самопроизвольно. В аккумуляторе эта реакция является возобновляемой и инициируется прохождением тока. Электрическая энергия превращается в химическую, а затем снова в электрическую.

    Чтобы заставить процесс протекать, ток должен идти по направлению из источника к аккумулятору. Для этого выходное напряжение источника должно превышать напряжение на заряжаемом элементе, а ток заряда должен ограничиваться:

    • на уровне 0,1-0,2С (номинальной емкости аккумулятора) – самый благоприятный режим для АКБ, но занимает много времени;
    • в пределах от 0,2С до 0,35С – заряд происходит примерно в два раза быстрее, режим считается приемлемым;
    • заряд током около 1С позволяет очень быстро пополнить запас энергии, но плохо влияет на срок службы АКБ – элемент может перегреться или выйти из строя даже в процессе зарядки.

    Для NiCd и NiMH аккумуляторов в профессиональных зарядных устройствах применяется реверсивный режим – длительный импульс заряда чередуется с коротким импульсом разряда. Так снимается вредный «эффект памяти», снижающий фактическую емкость АКБ.

    Кроме формирования постоянного тока и потребного напряжения, зарядное устройство должно позволять контролировать эти параметры с помощью встроенных вольтметра и амперметра, и иметь возможность их регулировки. Еще лучше поддерживать эти характеристики автоматически, формируя наиболее благоприятный режим заряда аккумулятора.

    Виды электрических схем ЗУ

    Сделать зарядное устройство для шуруповерта можно самостоятельно. Для этого понадобится схема, набор электронных компонентов, паяльник с расходными материалами и определенные навыки и квалификация.

    Перед выбором схемы надо учесть несколько моментов:

    • импульсное зарядное устройство легче, компактнее, у него выше КПД, но оно сложнее в сборке и наладке;
    • если режим зарядки и контроль ее завершения будет поддерживаться автоматически, то для NiCd, NiMH и Li-ion аккумуляторов алгоритм будет различаться – для первых двух типов зарядка производится стабилизированным током, литий-ионный заряжается по двухступенчатой (в некоторых случаях – трехступенчатой) схеме.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Номинальный ток ЗУ определяется мощностью элементов силовой цепи (трансформаторов, диодов, транзисторов), и их надо подбирать в соответствии с необходимостью.

    На 12 вольт

    Схема простого зарядного устройства на 12 вольт, в котором параметры зарядки надо поддерживать вручную, не требует высокой квалификации для сборки и не нуждается в наладке.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Ток устанавливается потенциометром, параметры контролируются по амперметру и вольтметру. Трансформатор можно подобрать готовый, с напряжением на вторичной обмотке 12-15 вольт – например, ТПП-48 или ТПП-201-208. Параметры других элементов, от которых не зависит максимальный ток, указаны на схеме. Остальные выбираются в зависимости от потребного выходного тока.

    ЭлементТребуемый токТип
    VD1-VD4До 1 А1N4001 (1N400X)
    1А и выше1N5400 (1N540X)
    VT1До 1 АКТ815
    1А и вышеКТ829

    По мере снижения зарядного тока его надо подстраивать до выбранного значения. Если производится зарядка током до 0,2С, процесс может занять до 16 часов, поэтому ручное поддержание параметров крайне неудобно.

    Зарядные устройства с автоматическим поддержанием параметров и алгоритмами, соответствующими типу аккумулятора, часто строят на микроконтроллерах. Схемы и прошивки можно найти в сети.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Также зарядные устройства строят на специализированных микросхемах. В качестве примера приведена схема зарядного устройства на MAX713 для никель-кадмиевых аккумуляторов. Очевидно, что схема достаточно сложна, но она универсальна (для различных напряжений), имеет режим тренировочного цикла и обеспечивает оптимальный режим зарядки, а также своевременное ее завершение. Это приводит к увеличению срока службы батарей.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    На 18 вольт

    Основы по самостоятельному изготовлению

    Независимо от предпочитаемого зарядного устройства, электронные компоненты надо расположить на плате и соединить согласно схеме. Самый простой способ – применить кусочек макетной платы (беспаечную применять категорически не рекомендуется – она не сможет обеспечить надежный контакт в течение длительного времени).

    Важно! В зарядном устройстве циркулируют достаточно большие токи. Все соединения (особенно в силовых цепях) должны выполняться только пайкой. Скрутки недопустимы, они приведут к локальному перегреву или даже возгоранию. Разъемные соединения также надо минимизировать.

    Единственный минус макетной платы – низкая эстетическая составляющая. Если это не устраивает будущего владельца, можно изготовить печатную плату в домашних условиях. Неплохие результаты дает метод ЛУТ (лазерно-утюжная технология). Ее суть в том, что рисунок платы распечатывается на лазерном принтере на специальной (или просто глянцевой журнальной) бумаге.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Потом рисунок переводится с помощью утюга на медное покрытие заготовки из фольгированного материала и травится.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Более сложный способ – с фоторезистом (жидким или пленочным). Для его реализации потребуется ультрафиолетовая лампа. Зато возможности этого метода намного выше.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Вытравить плату можно в классическом растворе хлорного железа. Более доступна и удобна другая смесь:

    • 100 мл аптечной перекиси водорода;
    • 30 грамм порошка лимонной кислоты;
    • 2-3 чайные ложки поваренной соли.

    После травления любым способом плата промывается в большом количестве проточной воды, покрытие рисунка смывается растворителем. Плата сушится, в ней сверлятся отверстия, и после облуживания она готова к монтажу.

    Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

    Рисунок платы можно разработать в бесплатной программе. Например, легко осваивается Sprint LayOut. При достижении определенной квалификации можно освоить более сложные программы для разработки печатных плат, но их придется приобрести или воспользоваться бесплатными версиями с урезанными возможностями (их достаточно, чтобы закрыть 90% потребностей домашнего мастера). При разработке платы надо предусматривать возможность установки мощных транзисторов и диодов на радиаторы. Для этого должно быть предусмотрено место на плате, либо элементы располагают на краю – чтобы привинтить их на внешние теплоотводы.

    Рекомендуем к просмотру: Зарядное для шуруповерта из того, что было в доме.

    Если схема позволяет крепить силовые элементы непосредственно на радиатор, то транзисторы или диоды надо сажать на теплопроводящую пасту. Если не позволяет – через изолирующие слюдяные или упругие прокладки. По окончании сборки надо изготовить корпус для устройства или сделать его самостоятельно. На передней панели располагают органы управления и индикации. Для подключения аккумуляторов можно смонтировать посадочное место с контактами от вышедшего из строя ЗУ.

    Устройство для зарядки аккумуляторов шуруповерта несложно собрать самостоятельно. Схему (и, соответственно, уровень автоматизации) надо выбирать под собственную квалификацию.

    Схемы и деталировки запчастей для инструмента Hammer



    ACD3.6C
    ACD3.6PR
    ACD4.8A
    ACD10,8Li
    ACD120 (120A)
    ACD120B
    ACD120C
    ACD120LE
    ACD121A
    ACD121B
    ACD121LE
    ACD122
    ACD122LE
    ACD141B
    ACD141Li1.3
    ACD141Li3.0
    ACD142
    ACD142Li
    ACD144 (144А)
    ACD144B
    ACD144C
    ACD144G Li 1,3 2,6
    ACD144G
    ACD144Li 2,8
    ACD144Li
    ACD168B
    ACD180
    ACD180B
    ACD180C
    ACD182
    ACD182Li
    ACD240C

    Дрели безударные

    Доели ударные

    Фены технические



    FNT2000
    FNT2000A
    HG2000
    HG2000A
    HG2000C
    HG2100C

    Фрезеры



    FRZ850A
    FRZ900
    FRZ1200
    FRZ1200A
    FRZ1500

    Газонокосилки

    Генераторы



    GNR800A

    Шлифовальные ленточные машинки

    Плоскошлифовальные машинки

    Шлифовальные орбитальные машинки

    Краскопульты



    PRZ80
    PRZ80A
    PRZ150A
    PRZ500A

    Лобзики

    Мойки высокого давления

    Насосы и станции

    Перфораторы



    PRT620
    PRT620A
    PRT620C
    PRT620new
    PRT650A
    PRT650B
    PRT700C
    PRT750
    PRT750A
    PRT750С
    PRT800A
    PRT800C
    PRT850
    PRT850new (2009)
    PRT900
    PRT900C
    PRT950
    PRT1100C
    PRT1100LE
    PRT1200
    PRT1250
    PRT1250new
    PRT1500
    PRT1500C

    Пилы цепные



    CPP1600
    CPP1800
    CPP1800A
    CPP1800B
    CPP2000
    CPP2000B
    CPP2000C
    CPP2200C
    CPP2400

    Пилы циркулярные



    CRP750A
    CRP900A
    CRP1200-160
    CRP1200-185
    CRP1200A
    CRP1300
    CRP1300A
    CRP1400C
    CRP1500
    CRP1600
    CRP1600A
    CRP1800C

    Плиткорезы электрические



    PLR450
    PLR600
    PLR800
    PLR900
    PLR1200

    Пылесосы



    PIL20, 30
    PIL50

    Рубанки

    Степлеры



    HPE10
    SET14
    SET16

    Сварочное оборудование



    TIG180R



    ETL930

    Пилы торцовочные



    STL800
    STL1200
    STL1500
    STL1600
    STL1800
    STL1800B

    Точила



    SPL105
    SPL150
    TSL150
    TSL170A
    TSL200A
    TSL350A
    TSL375
    TSL375A

    Триммеры



    ETR300
    ETR400
    ETR500
    ETR900
    ETR900A
    ETR900B
    ETR1000
    ETR1100
    ETR1100A (Катушка)
    ETR1100A (Нож)
    ETR1200
    ETR1200A_2011_
    ETR1200A_2012_

    Углошлифовальные машины



    USM500
    USM500A
    USM500LE
    USM600
    USM600A
    USM600CPR
    USM650B
    USM850
    USM850A
    USM850B
    USM850C
    USM900C
    USM900S
    USM1050A
    USM1050C
    USM1200
    USM1200A
    USM1200C
    USM1200S
    USM1250B
    USM1250C
    USM1500B
    USM1800B
    USM2000
    USM2050S
    USM2100A
    USM2200B
    USM2300C S
    USM2350A
    USM2500

    Изготовление устройства зарядного для шуруповёрта своими руками

    Зарядное устройство шуруповертов

    При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

    Виды зарядных устройств

    Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

    Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

    Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

    • никель-кадмиевые (NiCd);
    • никель-металл-гидридные (NiMH);
    • литий-ионные (LiIon).

    Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

    • индикацию;
    • быструю зарядку;
    • разный тип защиты.

    Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

    Типы применяемых батарей

    Как выбрать зарядку для шуруповертов

    Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

    Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

    Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

    Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

    Принцип работы ЗУ

    При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

    Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

    Схема самодельного зарядного устройства

    Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

    При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

    Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

    Как устроено зарядное устройство

    Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

    Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

    Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

    Самодельные приборы для заряда

    Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

    Как собрать зарядное устройство

    В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

    Схема на двух транзисторах

    Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

    Самодельные зарядочные устройства

    Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

    Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

    Использование специализированной микросхемы

    Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

    Как по схеме собрать зарядочное устройство для шуруповерта

    Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

    • Uвх – наибольшее напряжение на входе;
    • Uбат – напряжение на аккумулятор;
    • Iзар – зарядный ток.

    Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

    Зарядка шуруповёрта без зарядного

    Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.

    А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.

    Принцип работы зарядочного устройства

    Зарядка для шуруповерта

    Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.

    Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.

    Читайте также: