Почему тойота не ставит турбины

Обновлено: 02.05.2024

Почему японцы проиграли в войне турбин

В конце 1980-х и в первой половине 1990-х годов в Западной Европе царила эра атмосферных бензиновых агрегатов, компания BMW чуралась упоминания слова «турбо» как огня. Ее маркетологи наперебой друг другу выпускали пресс-релизы о прелестях атмосферников, а надувные моторы относили к достоянию дикарей из Азии. В «Mercedes-Benz» увлекались только механическими нагнетателями, которые называли Kompressor, в «Audi» не имелось турбированного мотора меньше 1,8 литра, что-то пытался делать SAAB, закончивший свой век мы знаем как, Ferrari свернула свою программу в 1987-м, а британские поделки оставались верны атмосферной философии BMW. Что и говорить, «Формула-1» — кузница высоких технологий, запретив турбированные агрегаты в 1989 году, только в 2014-м была вынуждена вернуться к ним снова.

Что мы видим сейчас: турбированные бензиновые моторы в Европе набирают популярность и появляются у каждого автопроизводителя. В XXI веке в BMW вдруг резко позабыли о том сладком чувстве, которое дарят водителю атмосферники, и теперь в модельной гамме немецкой марки нет ни одного двигателя без турбины! «Audi», «Skoda», SEAT и «Volkswagen» разделили свои моторы на TSI и TFSI, оставив безнаддувные двигатели только бедным странам третьего мира. «Mercedes-Benz», «Alfa Romeo», «Land Rover», «Jaguar», «Fiat» и даже Ferrari — все поддались заманчивому преимуществу турбо. Почему?

Одна из главных причин — это экологический обман под названием NEDC (новый европейский ездовой цикл). Согласно нему, средний расход топлива измеряется путем разгона с 0 до 50 км/ч в течение 26 секунд! Среди этапов измерений также есть городской цикл движения, который применяется с 1970-х годов, и загородный цикл, введенный чуть позже городского. Автомобиль при этом движется как овощ в идеальных температурных условиях, а турбина мотора либо не задействована, либо работает на самых низких нагрузках. Вот и получается, что расход, скажем, двигателя 1.4 TSI оказывается существенно меньше реального — как у 1,4-литрового атмосферника при низкой загрузке. Турбина в этом отношении — идеальный инструмент обмана.


Естественно, автопроизводители этим пользуются. Например, в Porsche расход топлива супергибрида 918 Spyder с 4,6-литровым двигателем V8 мощностью 608 л. с. по циклу NEDC сумели довести до 3,3 литра на 100 км. Разве этого можно достичь в реальных условиях?


На фоне своих европейских конкурентов японцы нашпиговывали свой домашний рынок компактными моделями с малолитражными турбированными бензиновыми агрегатами еще задолго до появления в том необходимости. Достаточно вспомнить Toyota Starlet, которая в 1984 году стала оснащаться рядным 4-цилиндровым турбированным мотором объемом всего 1,3 литра, а на версии GT Turbo в 1990-м из него уже выжимали 135 л. с.


В Mitsubishi оснащали компактный кроссовер 64-сильным турбированным бензиновым двигателем объемом всего 0,7 литра уже с 1994 года. В 1980 году был представлен Mitsubishi Lancer в версии EX 1800GSR с турбированным мотором объемом 1,8 литра мощностью 135, а чуть позже и 160 л. с. Также существовала версия с 1,6-литровым турбомотором мощностью 160 л. с.

В те же 1980-е среди турбированных моделей значились Nissan Silvia/180SX и Skyline RS, Toyota Carina GT-TR и Supra, Mitsubishi Starion GSR-VR, городской кей-кар Suzuki Alto оснащался 64-сильным моторчиком с наддувом объемом 0,54 литра, а Mazda RX-7 и вовсе использовала компактный турбированный роторный мотор объемом 1,3 литра и мощностью 185 л. с.!

Когда автопроизводители Европы осознали прелесть турбомашин, японцам, ориентированным в основном на атмосферный рынок США, вдруг стало не хватать опыта. Сейчас конкуренцию на европейском турборынке бренды из страны Восходящего Солнца составить не могут. Спорткары Toyota GT-86 и Subaru BRZ выходят с прекрасным шасси, но со слабым атмосферным двигателем, «Infiniti» кооперируется с «Mercedes-Benz», не имея возможности собственноручно разработать хороший турбированный агрегат, Honda еле выносила турбомотор для нового Civic Type R, который пришлось снимать с продаж в Старом Свете до выхода новой генерации из-за проблем с экологией, а Mazda «хоронит» роторные технологии, предлагая вместо них сплошь атмосферные SkyActiv.

Так ли страшна турбина? Как правильно ездить с турбомотором и сколько может стоить ремонт


В нашей прошлой публикации мы уже сравнивали турбированный и атмосферный моторы, пытаясь понять, в чем их отличие и какой из них лучше выбрать. Допустим, что вы уже приобрели машину с наддувным двигателем или вот-вот собираетесь ее купить.

Как устроена турбина?

В общем-то, турбокомпрессор устроен просто. Главная деталь — это картридж. Внутри него размещается вал, а с двух противоположных концов к этому валу прикреплены турбинные колеса. Для того чтобы вал нормально вращался и не грелся, к нему под давлением подается моторное масло. Также к картриджу идет и трубка с антифризом для дополнительного охлаждения.

435353.jpg

По бокам к корпусу картриджа прикреплены две "улитки" — горячая и холодная, внутри которых вращаются турбинные колеса. В горячую поступают выхлопные газы, раскручивают колесо, а затем "улетают" в выхлопную трубу через боковое отверстие улитки. Турбоколесо в холодной улитке всасывает чистый атмосферный воздух из впускного тракта и гонит его под сильным давлением дальше во впускной тракт к цилиндрам мотора.

Такова общая схема турбины, и мы не будем сейчас вдаваться в тонкости конструкции и различные варианты компоновки. Впрочем, стоит упомянуть новое поколение турбин, где масло подается под более низким давлением, а вал вращается в очень дорогих и сверхпрочных шариковых подшипниках.

5464564.jpg

Будет ли турбина "есть" масло?

Как мы уже говорили, без масла турбина работать не может. Обычно для герметизации вращающихся валов используют резиновые сальники (как в двигателе и коробке передач), но никакие сальники не смогут выдержать режимы работы турбины. Рабочая температура в ней достигает тысячи градусов, а частота вращения валов — сотен тысяч оборотов в минуту. Это намного более суровые условия, чем в моторе.

Валы и втулки в турбине подогнаны друг к другу с очень высокой точностью, и за счет этого масло не должно сочиться сквозь них, если турбина исправна. Но как только зазоры увеличиваются, масло через "холодную" часть турбины засасывает во впускной коллектор двигателя вместе с нагнетаемым воздухом. В таких случаях говорят, что "турбина гонит масло".

Depositphotos_11351295_s.jpg

Из-за чего это происходит?

  • Естественный износ рабочих поверхностей валов и втулок.
  • Пониженное давление масла в двигателе: турбине не хватает смазки, и она сильнее изнашивается.
  • Повышенное давление масла в двигателе: масло попросту выдавливает через щели между втулками и валами.
  • Повышенное разрежение во впускном коллекторе — масло из турбины туда засасывает. В результате двигатели, где зазоры в цилиндрах близки к идеальным, угар масла из-за неисправной турбины может достигать нескольких литров на сотню километров. Вот этого-то и боятся сторонники безнаддувных моторов.

Каков ресурс турбины?

Здесь все очень индивидуально и зависит от стиля езды. В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.

Depositphotos_9565780_s.jpg

Как понять, что турбина просится в ремонт?

Главный признак скорой кончины турбины — синеватый дым из выхлопной трубы. Его появление означает, что в цилиндрах вместе с топливовоздушной смесью сгорает масло. Весьма вероятно, что во впуск это масло попало именно через турбину. Чтобы провести диагностику, не нужно обладать дипломом автослесаря. Достаточно иметь книжку по устройству автомобиля, где нарисовано расположение узлов под капотом, и немного свободного времени.

  • Найдите впускной патрубок, по которому воздух попадает в турбину и открутите его. Засуньте руку в "улитку" турбины и нащупайте вал, на котором закреплена крыльчатка. Покачайте его, и если есть люфт, то через щели наверняка сочится масло.
  • Найдите интеркулер и загляните внутрь. Если внутри есть масло, то турбина его "гонит". Чем больше масла, тем выше износ.

Еще иногда на приборной доске турбированных автомобилей есть указатели температуры и давления турбины. Соответственно температура не должна быть повышенной, а давление — пониженным.

Все эти советы обязательно нужно учесть, если вы покупаете турбированную машину с пробегом. Турбина — вещь дорогостоящая, и ее дефект может обернуться для вас, как для будущего владельца, крупными затратами.

Depositphotos_2589297_s.jpg

Сколько стоит ремонт турбины и что в ней ремонтируется?

Когда турбина выходит из строя, можно пойти тремя путями.

Поменять турбину целиком. Чаще всего это совершенно лишняя затея, потому как масло гонит картридж, а корпуса-"улитки" остаются целыми и менять их не нужно. Замену турбины в сборе любят предлагать официальные дилеры и мультибрендовые сервисы, мастера на которых плохо разбираются в турбинах и ставят задачу получить с клиента максимум денег.

Почем? Cнятие, отсоединение трубок подачи масла и антифриза и установка турбины обратно стоит около 4 000 – 5 000 рублей.

Поменять картридж турбины. Под замену идет исключительно сам рабочий элемент турбокомпрессора — корпус с валом и крыльчатками. Поменять готовый картридж может даже мастер, который не специализируется на турбинах. Задача состоит в том, чтобы открутить несколько гаек крепежа, а потом закрутить их обратно.

Почем? Стоимость картриджа с заменой — около 15 000 – 20 000 рублей.

Отремонтировать картридж. Такая работа под силу исключительно мастерам специализированных автосервисов. Турбину разбирают полностью, моют ультразвуком, выявляют изношенные элементы и меняют их. Корпус картриджа растачивают на токарном станке, а затем всю конструкцию балансируют в два этапа, чтобы на скорости до 150 – 200 тысяч оборотов в минуту не было вибрации. Затем еще в картридж закачивают под давлением масло, чтобы проверить на герметичность.

Почем? Цена ремонта турбины зависит от массы факторов и колеблется от 7 000 до 25 000 рублей. Важно понимать, что если мастера называют серьезную сумму, то зачастую проще купить новую турбину.

Стоит ли покупать автомобиль с турбированным двигателем?

Сегодня автолюбители часто спорят о том, какой двигатель предпочтительней, атмосферный или турбированный. Согласно статистическим данным, полученным в результате анализа отечественного вторичного авторынка, наши соотечественники ощутимо чаще приобретают машины с «атмосферником», хотя турбомотор демонстрирует лучшие показатели мощности и расхода топлива при сопоставимой цене.

Все вышесказанное актуально для транспортных средств бюджетного и среднего ценового сегмента. Что до авто класса «Премиум», то тут явной тенденции не прослеживается. Так, желающие приобрести элитный автотранспорт для личного использования достаточно часто выбирают даже модели с битурбо­двигателями.

Причины опасений

Сразу же отметим тот факт, что в странах Евросоюза водители не боятся эксплуатации турбированных двигателей. Вполне вероятно, что столь лояльное отношение вызвано плавным и постепенным введением на рынок таких транспортных средств.

В Советском Союзе ДВС с турбиной никогда не было. Для большинства наших граждан это достаточно новая и незнакомая технология, которая вызывает определенное недоверие.

С появлением на отечественном рынке иномарок с рассматриваемыми силовыми установками возникли определенные трудности и проблемы с ремонтом турбированных двигателей.

Существующие сервисные центры часто отказывались ремонтировать подобные агрегаты, а специализированные СТО появились далеко не сразу. К тому же, такой ремонт стоил дорого, а гарантировать качество могли не все.

В 2009-м году в ЕС был принят экостандарт Евро‑5, под который ДВС с наддувом подходят практически идеально, являясь наиболее эффективным и предельно простым решением практически для каждого автопроизводителя.

К тому же, стандарт Евро‑6 для классических «атмосферников» становится практически недостижимым, что может стать причиной отказа от подобных двигателей в перспективе.

Неудачные моторы

Последние 15 лет наблюдается мировая тенденция даунсайзинга двигателей, которая подразумевает уменьшение рабочего объема ДВС и его габаритов, с одновременным увеличением производительности за счет использования турбонаддува.

И если в конце минувшего века литровая мощность под 100 «лошадок» была характеристикой исключительно спорткаров, то сегодня этим может похвастаться почти каждая модель массового производства.

К настоящему моменту производители транспортных средств выпустили огромное количество моделей с турбомоторов. В первое время часть таких двигателей, в силу недостатка опыта конструкторов, оказалась неудачным вложением денег. К таковым моторам можно отнести:

  • 3-цилиндровый;
  • 1.4 TSI/TFSI концерна Volkswagen/Audi;
  • EcoBoost, разработанный в Ford-е;
  • N45 и N46 от BMW;
  • 1.6 THP (EP6) копании PSA с участием BMW.

Это лишь часть довольно внушительного списка, в котором представлены фиаско мировых грандов. Отметим, что локальные проколы в решении данной задачи можно отыскать в истории компаний Мерседес, Рено, Тойота и многих других фирм. Речь идет о том, что их двигатели, созданные по новейшим технологиям, имели выдающиеся характеристики, но надежность данных агрегатов оставляла желать лучшего.

Основные проблемы

Несмотря на особенности турбированного двигателя каждого конкретного разработчика, проблемы у большинства копаний были схожими. Рассмотрим основные трудности, возникавшие при создании подобных ДВС.

  • Масляное голодание. Во многих случаях агрегаты и узлы турбодвигателя получают недостаточно смазки, что приводит в ускоренному износу механизмов и выходу из строя двигателя. Причиной этому был недостаточный уровень качества и надежности системы подачи смазки.
  • Высокий расход масла. Очень часто турбированные ДВС буквально «пожирают» смазку, демонстрируя литровый расход на 1000 километров. Причин этому может быть множество. Во многом они зависят от конструктивных особенностей и качества мотора каждого конкретного бренда.
  • Чувствительность к качеству горючего. Все турбодвигатели плохо переносят низкокачественное топливо. Некоторые даже на АИ‑95 отказываются работать эффективно. Это связано с тем, что примеси в горючем образуют нагар на форсунках, что влечет сбои в работе, прогорание поршней и деформацию клапанов.
  • Небольшой ресурс цепи ГРМ. Владельцы машин с турбинами знают, что цепной привод ГРМ в подобном автотранспорте растягивается заметно раньше, нежели это должно происходить согласно регламенту. Проблемы могут проявиться уже к 60-тысячному пробегу, что требует обращения в сервисный центр.

Реальное положение дел

У современных турбированных двигателей ресурс заметно выше, а устройство турбонаддува надежнее. Так, новый 1.4 TSI представляет собой надежный и долговечный агрегат.

Так, новый фольксвагеновский 1.4 TSI представляет собой надежный и долговечный агрегат, который активно используется на многих автомобилях разных брендов. Обновленный 1.6 THP от первоначального варианта отличается радикально, и в Китае он весьма востребован.

Для современных дизельных и бензиновых турбомоторов пробег в 2-3 сотни тысяч километров – это реальность. Они требуют качественного сервиса и регулярного обслуживания, но демонстрируют отменную экономичность и высокую мощность.

Стоит ли покупать турбированный двигатель?

Автомобили с подобными силовыми установками предпочитают любители активной езды. Лучше всего брать новую модель у официального дилера. Пока действует гарантия производителя – опасаться нечего. А вот от покупки подержанного ТС, выпущенного до 2011-го года, особенно с турбированным бензиновым мотором, лучше отказаться.

7 главных минусов и 2 плюса турбомоторов

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

Почему выходят из строя турбины и как этого избежать

Почему выходят из строя турбины и как этого избежать

- По своему опыту могу сказать, что совсем немного турбокомпрессоров выходит из строя, потому что выработали свой срок службы. Может, процентов пять всего, что попадает к нам в ремонт, может, чуть больше, но в любом случае доля весьма невелика по сравнению с тем, когда турбины ломаются задолго до того, как исчерпают ресурс.


С этого начался наш разговор с директором компании "Турбохэлп" Алексеем Оргишем о том, что нужно или, наоборот, не нужно делать автовладельцу, если он хочет, чтобы турбокомпрессор прослужил как можно дольше. Начали с причин неисправностей и поломок, потому что, не разобравшись, что ведет к фатальному исходу, невозможно что-то и посоветовать.


- Почти всегда, - продолжил Алексей, - разборка неисправной турбины показывает, что вызвали необходимость ремонта внешние причины. Основная - проблемы со смазкой. Сюда относится, например, использование масла с худшими характеристиками, чем допускается. Производители в инструкциях по эксплуатации указывают допуски, которым должно соответствовать заливаемое в двигатель масло. Учитывая, какие термические и механические нагрузки действуют в турбомоторах, это, как правило, "синтетика". Что делают наши владельцы? Смотрят: ага, двигатель прошел 250-300 тысяч километров, баста, буду лить в него "полусинтетику"! Мой дедушка так делал, и я так буду делать! Но мотор и турбина рассчитаны на то масло, которое указал производитель, требования к маслу от большого пробега не изменились, если и вовсе не стали еще жестче. Бывает, что смешивают разные масла, добавляют какие-то присадки, чего на турбированных моторах точно нельзя делать. Ухудшили качество масла - турбина пострадает первой.


Другая сторона этого же вопроса - несвоевременное обслуживание. В масле постепенно накапливаются какие-то инородные включения. Отфильтровываются только частицы, которые больше, чем размер пор в бумаге фильтра. Остальное проходит через бумагу и циркулирует по системе смазки, попадает под трущиеся детали турбины и их изнашивает. Опять-таки есть перепускной клапан, который, когда фильтр забит, открывается и пропускает в турбину вообще всю грязь. И это еще не все. Масло не фильтруется, пока машина не прогреется. Пока масло не станет жидким, тот же перепускной клапан отправляет неочищенное масло мимо фильтра прямиком к подшипникам турбины.


Что еще часто встречается и относится к смазке - ее недостаточное количество. Причины - появление течи, например, из-за недожатого штуцера, уменьшение проходного отверстия в трубке подачи масла к турбине, потому что ее согнули или из-за отложений нагара внутри трубки. Типичный пример - мотор 1.8T Volkswagen, хотя это касается не только его, но и других двигателей, в которых маслопровод проходит вблизи горячих частей мотора, его выпускного коллектора. Уменьшилось сечение трубки - меньше масла попадает в турбину. После этого турбина не жилец.

Трубка может быть нормальная, но забиты грязью каналы в двигателе еще до трубки - исход тот же. К примеру, в дизеле 1.6 HDi Peugeot проблему создает не трубка, а сетка, которая стоит в ней. Сетка забивается грязью - турбина выходит из строя. И вообще этот мотор сам по себе склонен закоксовываться, какое бы масло в него ни лили. Через 200-250 тысяч километров в нем появляются большие отложения нагара - видимо, это какая-то его особенность. Мотор надо разбирать и прочищать все каналы и маслозаборник в поддоне.


Еще проблему может создавать масляный насос. Касается это в принципе всех двигателей с пробегом, но чаще всего неисправность насоса встречается на моделях Renault с турбодизелем 1.9, на том же Volkswagen 1.8T, Mercedes Sprinter 2.2 CDI. Впрочем, со Sprinter надо учитывать, что там пробеги бывают огромные, - машина коммерческая.


У Volkswagen 2.0 TDI проворачивает шестигранник привода масляного насоса. Турбина выходит из строя первой. Если продолжать ехать - стопроцентно выйдет из строя мотор. Стоит шестигранник копейки, надо только знать регламент, когда его менять. Почему-то вовремя многие этого не делают. Кстати, на замену трубки подвода масла в дизелях Peugeot тоже есть регламент.


Масляное голодание опасно еще и тем, что для турбокомпрессора масло является охлаждающей жидкостью. Даже в турбинах с водяным охлаждением. Когда масла не хватает для смазки и охлаждения, происходит перегрев. Если при разборке видим, что на валу ротора появились цвета побежалости, значит, было масляное голодание.


Очень часто турбокомпрессор выходит из строя из-за попадания посторонних предметов. Когда мы обнаруживаем, что повреждено колесо компрессора, нередко причиной является давно не менявшийся воздушный фильтр. От времени и воздействия влаги он может расслоиться. Некачественный фильтр расслоится раньше, качественный - позже, но в любом случае появляется прореха, через которую в компрессор вместе с воздухом может прилететь что угодно. Могут появиться повреждения в корпусе воздухофильтра и воздуховоде между фильтром и компрессором либо неплотности в креплениях патрубков. Это обычно, а бывают еще причины, характерные только для каких-то определенных моторов. Например, в Volkswagen Touran 1.9 2004-2005 годов в компрессор могут прилететь фрагменты деталей от разрушившейся системы вентиляции картера. Опять-таки на замену клапанной крышки вместе с пластиковой коробочкой от системы вентиляции есть регламент, но также не все ее меняют.


В турбинную часть посторонние предметы попадают со стороны выхлопного коллектора. Во-первых, сам коллектор может лопнуть с образованием осколков. Владельцы BMW X5 в 53-м кузове прекрасно знают, что это такое. Во-вторых, в коллекторе может образовываться кокс. Его куски отваливаются и попадают в турбину. Но кокс сам собой не появляется. При исправной топливной системе, при незабитом катализаторе для образования кокса нет условий. Часто ездят с неисправной топливной системой: дескать, был расход по трассе пять литров, стал семь - не беда по сравнению с тем, что надо лезть в топливную систему, где устранение неисправности может больших денег стоить.


Результат - забивается катализатор и сажевый фильтр, появляется сопротивление выпуску, выхлопные газы оказывают давление на турбинное колесо, у ротора появляется продольный люфт, после чего долго турбина не ездит. Кроме кокса, который откладывается в выпускном коллекторе, а затем отваливается, отложения образуются в турбине. В результате теряют подвижность лопатки в направляющем аппарате, если турбина с изменяемой геометрией. Еще про катализатор и сажевый фильтр, думаю, надо напомнить, что вообще-то эти узлы имеют ограниченный срок службы. Когда он истек, а ничего не делалось, ждите вопросов с турбокомпрессором.


Также в турбину могут прилететь фрагменты поршней, седел клапанов. Владельцы Opel и BMW прекрасно знакомы с проблемой заслонок впускного коллектора, которые разлетаются, их затягивает в цилиндры, а затем выбрасывает в выпускной коллектор и далее в турбину. Если двигатель начал сыпаться, не надейтесь, что после ремонта турбокомпрессора больше в него ничего не прилетит. Скорее всего, прилетит что-то еще, поэтому надо разбирать мотор.


Чип-тюнинг тоже постороннее вмешательство. Изменение настроек с целью получения дополнительной мощности зачастую ведет к тому, что увеличивается скорость вращения ротора турбины. Требуется увеличить подачу масла, но ведь, кроме прошивки "мозгов", с двигателем при чип-тюнинге больше ничего не делается. Производительность масляного насоса не поменялась, значит, как минимум будет масляное голодание. А если скорость вращения ротора превысит расчетную, ротор вообще скручивает от инерционных нагрузок. Бывает, просто отрываются лопасти от колес.


Еще достаточно часто турбины попадают в ремонт после ДТП. Опять-таки внешнее воздействие, но если говорить о типичных эксплуатационных причинах выхода турбокомпрессоров из строя, то в принципе они уже названы. Что делать, чтобы их исключить, мне кажется, любой разумный автовладелец должен понять сам. А не поймет - турбина напомнит.

Пять ошибок водителей, которые быстро убивают турбомотор

alt=" Фото: Пресс-служба Skoda." />
 Фото: Пресс-служба Skoda.

Признаками приближающейся кончины турбины, как правило, являются посторонние шумы из-под капота, которые возникают сразу после запуска. Чаще всего речь идет о свисте или гуле, который может сопровождается также выхлопом сизого цвета. Еще один косвенный признак проблем с турбиной - "масложор", возникающий в результате проникновения масла сквозь люфты и зазоры в деталях. Какие промахи в эксплуатации могут привести к подобным последствиям?

Наиболее часто турбину в современных моторах приговаривает масляное голодание, которое происходит по разным причинам.

Фото: Пресс-служба Kia.

Самая банальная - это нежелание владельца контролировать уровень масла. Владельца, впрочем, можно понять - он только купил автомобиль, и масла вроде бы залито на длительный срок эксплуатации. Однако коррективы вносят манера и характер езды. Если гонять и эксплуатировать машину под нагрузкой, например, с заполненным салоном и багажником, расход лубриканта заметно увеличивается. Значительно больше масла расходуется также в холодное время года.

В среднем же, если турбодвижок среднестатистической легковушки относительно новый, он будет потреблять около 80 грамм масла на 100 литров топлива. Что же касается изношенных турбоагрегатов, там моторный "жор" может доходить и до 2 л на 100 литров топлива. Что происходит при таком раскладе с турбиной? При масляном голодании начинается повышенный износ ее деталей и снижается теплоотвод. В результате "улитка" ломается и, как правило, это является негарантийным случаем, поскольку владелец не следил за уровнем масла.

Не секрет, что турбодвижки очень не любят, когда их глушат сразу после долгой и активной езды по трассе или бездорожью. В процессе такого "драйва" крыльчатка турбины может раскручиваться до 10000-15000 оборотов в минуту. Когда же раскаленный узел перестает смазываться маслом, это провоцирует поломки из-за неравномерного температурного расширения.

Фото: Сергей Бобылев/ТАСС

Кроме того, поскольку масло уже не подается, тепло уходит в подшипниковый узел, где остатки смазки начинают закоксовываться. Самое интересное, что нейтрализовать проблему можно элементарным способом - дать турбоагрегату поработать на холостых оборотах примерно минуту и только после этого глушить мотор.

Многие сейчас подумают - а как же системы страховки, такие как турботаймер (обеспечивает работу двигателя в течение двух-трех минут на минимальных оборотах уже после выключения зажигания), программное включение вентилятора после выключения мотора или, скажем, электрические циркуляционные насосы, подающие к турбокомпрессору охлаждающую жидкость?

Все эти ноу-хау работают без огрехов, но не являются панацеей, поскольку сильный нагрев турбины требует долгого и обстоятельного ее охлаждения. Поэтому наша рекомендация такова - не важно, какой у вас автомобиль. Не глушите турбомотор сразу, дайте ему поработать на минимальных оборотах, и сбережете здоровье турбины.

Есть такая категория водителей, которые сдувают пылинки со своих "железных коней" и в частности не дают мотору работать под серьезной нагрузкой и практикуют движение накатом, например, подкатываясь к светофорам на "нейтрали". Как это ни парадоксально, но такая манера пагубно влияет на турбоагрегаты.

Фото: www.behance.net/smartyom

К примеру, некоторые турбомоторы компании Subaru не терпят низкого давления масла в двигателе. Дело в том, что лубрикант начинает хуже циркулировать по системе смазки, а если водитель вдруг становится "тихоходом" после активной езды, возможно также и пригорание масла. Самое интересное, что владелец убежден, что, двигаясь на машине со скоростью черепахи, он дает турбодвигателю отдохнуть.

На самом же деле он стремительно приближает смерть турбины. Именно поэтому на турбированных двигателях переводить коробку передач в нейтральное положение на ходу допустимо лишь непродолжительное время. Передача должна быть всегда активирована даже при равномерном движении накатом.

Что бы ни говорили "знатоки", автомобили с турбомоторами необходимо прогревать после "холодного пуска" зимой - сначала пару-тройку минут на месте, а потом еще несколько минут, двигаясь в спокойной манере, избегая высоких оборотов двигателя.

В противном случае, если холодный мотор раскрутить до красной зоны тахометра, турбина начнет быстро и сильно разогреваться, и из-за резкого перепада температур могут произойти деформации металлических элементов конструкции. При этом смазка все еще густая, и турбина работает в условиях серьезного масляного дефицита. Узел в результате работает почти "на сухую" и гарантированно выйдет из строя раньше времени.

Что будет, если поить машины с высокотехнологичными турбинами низкооктановым бензином?

Ничего хорошего. Если в мануале и на крышке топливного бака указано "не ниже 95 го бензина", то, заправляясь топливом АИ-92, вы повышаете вероятность детонации, иными словами, взрывоподобного горения смеси в цилиндрах.

Последнее явление чревато, как известно, механическим разрушением поршневой группы и износом вкладышей. Турбина же увеличивает массу сгораемой топливной смеси внутри цилиндров.

Чем турбина мощнее, тем выше риск детонации при работе на низкооктановом топливе. Соответственно, чтобы избежать детонации, необходимо заливать в бензиновые турбомоторы только высокооктановое топливо - бензин АИ-95, АИ-95+ и АИ-98 будет предпочтительным вариантом, а если альтернативы 92-ому топливу нет, то необходимо как минимум перемещаться по дорогам спокойной манере и не поддерживать высокие обороты турбодвигателя.

Четыре способа «убить» турбину. Чего «боится» наддув больше всего?

Турбированные двигатели требуют аккуратного отношения, в особенности в сильные морозы. Их нельзя эксплуатировать так же, как обычные атмосферные моторы, которые более неприхотливы и менее чувствительны к перепадам температур. Ошибки водителей приводят к снижению ресурса технического узла и к его последующему выходу из строя. Какие же действия противопоказаны для турбированных моторов?

Масляное голодание

Главное отличие турбированного силового агрегата от обычного — это наличие системы наддува на впуске воздуха. Силовой агрегат получает на входе в цилиндры больше воздуха, сжатого компрессором. Чем больше воздуха, тем выше температура горения смеси и сильнее давление поршня. Топливо тратится меньше, а тяга ощущается уже при невысоких оборотах двигателя. Но чтобы обеспечить этот процесс, нужно много масла, которое расходуется турбированным мотором почти в три раза больше обычного.

Водители не всегда следят за уровнем смазывающей жидкости. Щупа они не касаются месяцами, в итоге, прежде чем сработает сигнализатор на панели приборов, турбина успевает съесть более литра масла. Для атмосферника это не страшно. Однако для турбированного агрегата падение уровня масла — это критично. Начинается повышенный износ, снижается теплоотвод, остатки масла пригорают и плохо защищают силовой агрегат. В общем, необходимо хотя бы два раза в месяц проверять его уровень по щупу. Если масло опустилось ниже допустимого уровня, то не следует тянуть с доливом.

В среднем турбированный агрегат может потреблять до 1 л масла на тысячу км пробега при активной езде и 1 л на 3-4 тыс. при спокойном ритме движения.


Любители наката

Некоторые турбомоторы старых конструкций, например оппозитные на Subaru, плохо переносят низкое давление масла. К примеру, если водитель пытается сэкономить топливо и часто движется накатом на «нейтрали», такая езда может привести к необоснованному износу деталей. Дело в том, что насос подключен к коленвалу и сильно зависит от его оборотов. Если сбросить газ до холостого хода, то давление падает и масло хуже циркулирует по системе смазки.

Особенно опасно, когда движение накатом начинается сразу после активного драйва. На холостых оборотах охлаждение турбины идет медленно, из-за чего возможно пригорание масла. Водитель думает, что дает двигателю отдохнуть, а на самом деле он убивает турбину.

Поэтому на наддувных моторах «нейтраль» можно включать разве что на стоянке. Передача должна быть всегда активирована даже при равномерном движении накатом. В этом случае мотор раскручивается сильнее.


Глушить не вовремя

Самый известный способ убить турбину — это сразу заглушить мотор после активной езды. К примеру, водитель торопится в магазин, обгоняет попутчиков, дерзко ныряет в поворот, мгновенно останавливается и вытаскивает ключ из замка зажигания. Раскаленная турбина остается без охлаждения маслом. В итоге ее детали может повести от неравномерного температурного расширения. Кроме того, локальный перегрев приводит к пригораниям масла и его закоксовыванию.

Поэтому перед остановкой необходимо охладить турбину. Сделать это можно работой мотора на холостом ходу или во время движения, проехав без добавления газа пару сотен метров.

Кроме того, на автомобиль можно поставить так называемый турботаймер, то есть устройство, которое не глушит силовой агрегат после вытаскивания ключа зажигания, а позволяет ему немного поработать, пока турбина не охладится.


Холодный старт

Перед активными поездками в морозы турбонаддув необходимо обязательно прогреть. Если холодный мотор раскрутить до 2,5-3 тысяч оборотов, то турбина начнет сильно разогреваться, отчего могут начаться температурные деформации металлических элементов. В общем, перед тем как поднажать на педаль газа, мотор надо довести до рабочей температуры. Это значит, что в морозы первые 10-15 минут после начала поездки лихачить противопоказано.

Сейчас ресурс двигателя в 400 тыс. км считается огромным достижением. Турбокомпрессоры редко ходят больше 150 тыс. км, и чтобы не дать им разрушиться раньше времени, лучше соблюдать правила эксплуатации.

Течет масло из турбины

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Течет масло из турбины

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.


Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла - признаки, причины и что нужно делать
Подробнее

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.


Через сколько км менять масло в двигателе

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.


Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

Методы устранения поломки


Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.


Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset H1C или H1E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Читайте также: