Система контроля токсичности выхлопных газов

Обновлено: 05.07.2024

Датчики системы контроля отработавших газов

Кроме датчиков кислорода, системы контроля отработавших газов содержат датчики содержания оксидов азота.

Датчик оксидов азота

Рис. Датчик оксидов азота:
1 – микросхемы; 2 – корпус

Датчик оксидов азота вворачивается в выпускную систему непосредственно за накопительным нейтрализатором. Он позволяет определять концентрации оксидов азота и кислорода в отработавших газов. Сигналы с датчика передаются на вход блока управления. Блок управления датчиком оксидов устанавливается на днище кузова вблизи от датчика оксидов азота. Такое расположение снижает до минимума внешние помехи при передаче сигналов датчика оксидов азота. В блоке управления датчиком происходит подготовка сигналов датчика оксидов азота, которые передаются на блок управления двигателя.

По сигналам датчика определяется соответствие настройки установленного перед нейтрализатором широкополосного датчика кислорода на стехиометрическую смесь, работоспособность нейтрализатора, необходимость регенерации нейтрализатора по оксидам азота и сере.

Датчик содержит две камеры, две насосных ячейки накачки, несколько электродов и подогреватель.

Принцип работы датчика оксидов азота

Рис. Принцип работы датчика оксидов азота:
1 – базовая ячейка; 2 – камера 1; 3 – отработавшие газы; 4 – первая ячейка накачки; 5 – электроды; 6 – блок управления датчиком оксида азота; 7 – освобожденные от кислорода отработавшие газы; 8 – вторая камера; 9 – вторая ячейка накачки; 10 – электроды; 11 – блок управления двигателя

Чувствительный элемент состоит из диоксида циркония, который пропускает отрицательные ионы кислорода, перемещаемые от отрицательного электрода к положительному, под действием приложенного к ним напряжения.

Действие датчика оксидов азота основано на измерении потока кислорода аналогично действию широкополосного датчика кислорода.

Первая (насосная) ячейка настроена на концентрацию кислорода, соответствующую стехиометрическому составу смеси (14,7 кг воздуха на 1 кг топлива, коэффициент избытка воздуха – 1,0). Сначала определяется коэффициент избытка воздуха в первой камере датчика при поступлении части потока отработавших газов в первую камеру датчика по величине потока ионов через твердый электролит между двумя электродами. Ввиду различной концентрации кислорода в отработавших газах и в базовой камере на электродах появляется разность напряжений. Блок управления датчиком регулирует напряжение (около 425 мВ), соответствующее коэффициенту избытка воздуха, равному единице. При отклонениях напряжения от заданного значения кислород перекачивается от одного электрода к другому. Необходимый для этого ток накачки используется как мера для определения коэффициента избытка воздуха.

После определения коэффициента избытка воздуха в первой камере, освобожденные от кислорода отработавшие газы перетекают из первой во вторую камеру.

Здесь молекулы оксидов азота разлагаются с помощью специального электрода на азот (N2) и кислород (O2). Под действием постоянно прилагаемого к электродам напряжения, равного 450 мВ, ионы кислорода движутся от внутреннего электрода к наружному. Поддерживаемый таким образом ток накачки является мерой концентрации кислорода во второй камере датчика. Величина тока накачки соответствует концентрации оксидов азота в отработавших газах.

Если количество задержанных в накопительном нейтрализаторе оксидов азота превысило уровень, соответствующий его насыщению, проводится цикл регенерации оксидов азота. Частое повторение циклов регенерации свидетельствует о загрязнении нейтрализатора серой, при этом проводится цикл ее регенерации.

Датчик температуры отработавших газов

Этот датчик установлен непосредственно перед накопительным нейтрализатором. По сигналу датчика определяется работоспособность накопительного нейтрализатора NOx и оптимизируются его функции. Помимо этого получаемые посредством датчика температуры данные используются для определения теплового состояния предварительного нейтрализатора, поддержки температурной системы выпуска, а также для защиты ее компонентов от перегрева.

Система контроля токсичности выхлопных газов

Есть три главных источника, вызывающих проблемы токсичности выхлопа в автомобиле: выбросы отработавших газов, испарения из картера двигателя и испарения из топливного бака.
Системы понижения токсичности выхлопа (Emission Control Systems) использовались с начала 1960-х годов.
В 1961г. была разработана система положительной вентиляции картера (Positive Crankcase Ventilation (PCV)), при которой в автомобилях и легких грузовых автомобилях, проданных в Калифорнии, испарения картера двигателя дозировались назад к впускному коллектору. В 1966г. система управления клапанами инжекции воздуха (Air Injection Reaction (AIR)) была встроена в автомобили и легкие грузовые автомобили, проданные в Калифорнии.
Другие системы, включая систему сгорания, которой управляют (Controlled Combustion System (CCS)) были развиты и использовались в промышленном масштабе c 1968 года.
Выделения топливных паров начали контролироваться с введением систем понижения токсичности испарений из бензобака. Эти системы начали устанавливаться с 1970 года на автомобили, проданные в Калифорнии.
Система рециркуляции отработанных газов (Exhaust Gas Recirculation (EGR)), использовалась интенсивно на моделях автомобилей с 1973 года, когда федеральные стандарты США для окисей азота вступили в силу. Эти системы были необходимы для снижения выброса окидов азота (NOx).
Каталитический конвертер обеспечил окисление угарного газа и углеводородные выбросы в выхлопе двигателей. Начиная с 1975 года выпуска, большинство легковых автомобилей США и легких грузовых автомобилей были оборудованы конвертерами.

Выбросы отработанных газов

Выхлоп автомобильных бензиновых двигателей содержит три существенных загрязнителя воздуха: угарный газ, углеводороды и окиси азота:

  • Угарный газ (СO) - нормальный продукт сгорания и составляет большую часть загрязнения от автомобилей.
  • Углеводороды (HC) - выделения происходят из камер сгорания цилиндров двигателя из-за неполного сгорания. Когда свеча зажигания поджигает воздушно-топливную смесь в каждой камере сгорания, фронт пламени формируется и перемещается быстро внутри камеры. Прохладные стенки цилиндров препятствуют полному сгоранию воздушно-топливной смеси. Приблизительно одна треть несгоревших углеводородов выбрасывается через систему выпуска к внешнему воздуху.
  • Окиси азота (NOx) - часть полного процесса сгорания. Они увеличиваются при увеличении температуры сгорания.
Картерные газы

Во время процесса сгорания некоторое количество газов пробивается через поршневые кольца в картер двигателя.
Эти газы состоят в значительной степени из несожженного топлива (углеводороды). Утечка газов, названная "прорывом газов", происходит из-за очень высокого давления в камерах сгорания.
Картерные газы должны быть удалены от картера быстро, иначе они загрязнят и окислят моторное масло. Они могут также сформировать осадок, который может затронуть рабочие характеристики двигателя и повредить детали двигателя. Вентиляционные системы производят очистку картера от этих испарений.

Испарение топлива

Третий источник выделений от автомобилей - испарение бензина. Это происходит, не только когда топливный бак заполнен, но в других случаях, даже когда автомобиль не находится в заведенном состоянии.

В течение последующих лет, поскольку инструкции и требования изменились, системы эмиссии были развиты, изменены и использовались в различных комбинациях, чтобы соответствовать изменяющимся стандартам в течение каждого нового модельного года. Эти системы описаны в руководствах по ремонту и эксплуатации автомобилей.

Федеральные требования США по эмиссии (граммы/миля)
(легковые автомобили)

Углеводороды (HC) Угарный газ (CO) Оксиды азота (NOx)
Год
выпуска
Калифорн. Федер. Калифорн. Федер. Калифорн. Федер.
1960
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995-2000

0.41
0.41
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.41
0.41
0.41
0.41
10.6
1.5
1.5
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41

9.0
9.0
9.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
3.4
84.0
15.0
15.0
7.0
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4

1.5
1.5
1.0
0.7
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
4.1
2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
До 1960 года – контроль отсутствовал
Опционная таблица контроля за эмиссией транспортного средства
(VEHICLE EMISSION CONTROL INFORMATION LABEL)

Опционная таблица контроля за эмиссией автомобиля содержит важные спецификации эмиссии.

Вверху слева - информация выброса отработавших газов, которая идентифицирует модельный год, производственное подразделение двигателя, объем двигателя, класс транспортного средства и типе управления топливом двигателя.
Кроме того, есть иллюстрированный компонент эмиссии и вакуумная схема двигателя. Этот лейбл расположен в отсеке двигателя каждого транспортного средства.

Системы нейтрализации отработавших газов на дизельных моторах.

Введение : Работая над преамбулой к описанию систем нейтрализации выхлопных газов (Selective Catalytic Reduction ) задумался о освещении, так сказать, предистории возникновения данных систем. Частично о проблеме выброса ОГ (отработавших газов)я уже писал, разбирая систему возврата отработавших газов (EGR) и ее проблемы в конкретных конструктивных решениях, теперь пришло время поговорить о другом . Опору сделаем на конкретные параметры. Для оценки эффективности сгорания топлива в дизельном моторе есть два основополагающих фактора это количество частиц сажи и количество оксидов азота (NOx) которое измеряется в милиграммах на км .

Как видите данные показатели составляют значительную часть всех компонентов OГ влияющих на экологию негативно .При нормах Евро 3 (2000г) в ОГ допускалось содержание 500 мг NOx, в настоящее время, уже при нормах 2018 года (евро 6, 2018) их количество должно быть сокращено практически в 6 раз ! (80) . Надо отчетливо понимать, что приведение этого показателя в норму в принципе становится недостижимым только средствами инженерных решений при компоновке элементов ДВС и разработки их конструкции ( форма камера сгорания, система впуска, модернизации топливной системы и т.д.), а требует и непосредственной работы с самими выхлопными газами .Практически это означает, что любой дизельный ДВС не оснащенный этими двумя системами просто будет запрещен к эксплуатации в данных странах (что бы подчеркнуть важность данного вопроса, хочу напомнить, что согласно статистике, более 65% частного легкового автомобильного парка в таких странах как Бельгия, Франция, Испания и др. составляют автомобили именно с дизельным мотором, и вопрос, учитывая их законодательства, по допуску к эксплуатации стоит весьма остро ). Размышляя по вопросу дальнейших перспектив детища Рудольфа Дизеля и просматривая материалы по этому вопросу мне попалась очень интересная точка зрения, когда ужесточение экологических норм относительно дизельных моторов было связано с процентным соотношением выхода фракций при нефтепереработке (диз. топливо относительно бензина 20 к 45 в среднем ), правда не стоит забывать о коммерческом транспорте, подавляющее количество которого по- прежнему работает на дизельных ДВС (и это не электрический городской автобус, а автопоезда которые приносят весьма солидную прибыль, расскажите дальнобойщикам Австралии например, про преимущество электрической тяги или экономичность бензинового мотора)) .Но нам разумеется ближе то, что происходит у нас, а у нас ситуация совершенно иная, можно сказать, зеркальная. .Для начала, хочется отметить тот факт, что автомобили оборудованые сажевыми фильтрами и системой «Ad blue»(впрыск мочевины) официально не поставлялись ОД для реализации в России, скорее всего из- за больших претензий к качеству диз.топлива (и они по большей части обоснованы ), основополагающей примесью в котором была сера (она и приводила в негодность весьма недешевые компоненты этих систем). Я отлично помню, работая в структуре VW c 1999-2008 с какой гордостью (если не сказать с апломбом )) подавались тезисы «о самом чистом и в то же время экономичном дизельном моторе», о преимуществе этих моторов выраженном в цифрах, по Американскому континенту с его мизерным 1.5 % общей реализации выпуска дизельных автомобилей, все таки больше 56% были моторы VW . Не могу не отметить то, что эти 1.5 % и стали в дальнейшем «костью в горло», и думаю, на долгое время, поскольку нашлись пытливые виргинские товарищи которые смогли сопоставить то, что выделяет двс на дороге и при стандартном контрольном ездовом цикле . «слегка» отличаются)).Это «слегка», напоминаю, заключается в цифре СОРОК ! Жалко, что премий за такие «открытия» не существуют и Оскара не дают)), можете себе представить какой масштаб скандала, действительно натуральный дизельгейт . Обычным людям остается только сожалеть, о том что все это великолепие .

.в конце концов просто сгниет на стоянке в Потомаке )).Ведь все потуги со сменой программного обеспечения или установке(по акции) «специального сепаратора» воздушного потока (обычная сетка как на расходомере) не приведут к выполнению необходимых норм, а вывезти автомобили для реализации в другом месте слишком накладное мероприятие . Почему проблема таких огромных масштабов кардинально не решается мы разберем когда будем рассматривать компоненты системы впрыска мочевины в ОГ (универсальное обозначение системы «Ad Blue») более подробно . Итак, простите за длинное «предисловие «, пожалуй начнем рассматривать системы более подробно и первая по списку у нас будет система наиболее известная большому количеству автовладельцев с дизельными моторами под названием «Сажевый фильтр « .))

Часть 1 .Сажевый фильтр или DPF (Diesel Particulare Filter).

Возникновение частиц сажи (средний диаметр около 5мкм) при работе дизельного мотора неизбежно, поскольку обеспечить полное сгорание дизельного топлива по всему объему камеры сгорания невозможно, всегда найдутся зоны, где топливо полностью не сгорает (зоны переобогащения) . Да, разумеется, общее количество таких зон (и сажи как следствие) вы можете значительно снизить ( тут можно упомянуть в качестве влияющих факторов повышение давление впрыска при котором повышается температура цикла, изменение формы днища поршня для улучшения процесса сгорания, применение вихревых каналов вместе с вихревыми заслонками (которые владельцы, как правило, потом вырезают полностью устав оплачивать их периодическую замену)), однако, убрать эти зоны до величины погрешности все равно не получится, а если не получается повлиять на чистоту сгорания внутри мотора, значит надо придумать способ …улавливать не желательный продукт на выходе(напоминает биологический процесс не находите ?)) . Сама частица сажи тоже продукт комбинированный, адсорбирующая примеси на поверхности .

Почему же состояние сажевого фильтра сейчас вызывает гораздо больше опасений и разговоров чем, скажем обычный катализатор на бензиновых моторах ранее ? Дело в том, что рабочая среда катализаторов –газы (COх, NHx, NOx) требует только максимальную площадь воздействия каталитических элементов для которых вполне подходят идеально прямые по всей длине соты, с сажевым же фильтром нужно улавливать и взвешенные частицы, помимо нейтрализации описанных газов, а для этого прямые соты не подойдут, на первых типах выхлопных систем они конструктивно выполнялись отдельно, где нейтрализаторы каталитическое типа с прямыми сотами стояли до сажевого фильтра, в TDi последних выпусков они стали объединятся в один корпус, где сажевый фильтр работал в «межстеночном» пространстве, а сами прямые каналы были попеременно закрыты со стороны впуска и выпуска .

В итоге пришли вот к такой конструкции .

Так в чем «соль» постоянного обсуждения состояния этого узла среди владельцев автомобилей оборудованных такой системой ? Дело в том, что проходимость данного фильтра довольно жестко завязана на пожарную безопасность автомобиля и любое отклонение по сопротивлению потоку ОГ тут же вызывает принудительно ограничение мощности ДВС инициируемое ЭБУ (с соответствующей индикацией на комбинации приборов).

Если говорить простым языком, массу сажи, которую мы видим в параметрах, физически никто «взвесить» не может, определение величины достигается расчетным способом. Базовым показателем расчета является массовый расход воздуха( расходомер, еще одна его важная функциональная обязанность ) на основании которого и температуры ОГ (датчик температуры ОГ ) определяется объемный расход ОГ, учитывающий температурные показатели цикла, далее имея параметр газодинамического сопротивления (по датчику перепада давлений в сажевом фильтре) уже можно вычислить количество сажи которое находится в сажевом фильтре. Поскольку речь идет о фильтре, который, тем не менее, невозможно просто сменить, то сажу нужно каким то образом из него все-таки удалять )) . Известны два программных способа очистки такого фильтра -штатная(в процессе эксплуатации автомобиля ) и аварийная( посредством диагностического прибора на сервисе ), если же заполнение сажей фильтром превышает 80% то без его фактической замены не обойтись, об этом надо помнить! Разумеется проверять его при ТО и предупреждать владельца о его состоянии сервис просто обязан!(хотя большинство обращений по поводу этих работ к сервисменами обычно заканчивается словами «Резать к чертовой матери !»))) Если говорить о экологичности данных процессов (а зачем собственно сажевый фильтр нужен ?), то наблюдается странный парадокс, когда штатная операция при эксплуатации автомобиля выполняемая не в полном объеме приносит больше вреда, чем аварийная в сервисе .Довольно часто при проведении аварийной (активной) регенерации задают вопрос о вредности самого процесса, поэтому уточняю этот момент отдельно ) ) .судите сами .Вот химические процессы последовательно протекаемые в сажевом фильтре при, пассивной регенерации .

Обратите внимание, много условностей для нормального протекания трехступенчатого процесса и катализатор (платина ) должен быть использован максимально для связывания NOx(чему препятствуют примеси в топливе и сера в особенности), и образуемого NO2 должно хватать для взаимодействия с углеродом на составляющие газы и, наконец, избыточное количество кислорода (вспоминаем EGR, заслонки, сам процесс сгорания диз.топлива с переобогащенными зонами и понимаем, что с этим тоже проблема) для связывания обоих вредных примесей.При активной же регенерации частички сажи сгорают благодаря высокой температуре ОГ. При этом образующий частицы сажи углерод соединяется с кислородом, образуя диоксид углерода.
C + O2 образуют CO2
Просто нагрей и получишь результат )) .
(Конечно при такой процедуре и рабочей температуре под 600 градусов фильтр разогревается до красна, и обязательно нужен обдув и соблюдение пожарной безопасности, но все же.))
Если говорить о режиме сложности проведения штатной регенерации, то дело не только в самом топливе, но и в условиях возникновения оптимальной регенерации (восстановления) сажевого фильтра, ведь при длительной эксплуатации автомобиля в режиме движения на короткие расстояния регенерация сажевого фильтра может оказаться невозможной из-за слишком низкого уровня температур ОГ. В таких случаях фильтр может быть поврежден или заблокирован сажей. Именно в такой момент водитель задается вопросом, что это за новый непонятный значек появляется на комбинации приборов и еще моргать начинает и он, разумеется, делает …не то, что нужно –давит на тормоз)), оказывается, если эта лампа загорелась, то водителю, наоборот, рекомендуется двигаться в течение приблизительно 15 минут с равно- мерной по возможности скоростью, которая должна превышать 60 км/ч.Более того наиболее эффективно фильтр регенерируется при движении автомобиля на 4-ой или 5-ой передачах и работе двигателя с частотой вращения около 2000 об/мин. Ну перед немцем с его автобанами высшего класса до местной деревни такой вопрос не стоит, а вот что делать нам с вездесущими пробками ? Штатные мероприятия, предусмотренные конструкторами(здесь и далее фрагменты SSP 336), когда нет возможности провести регенерацию по впрыску дополнительного количества топлива (что бы топливо догорало прямо в катализаторе, поднимая таким образом его температуру ).

.тоже не помогают ( но автомобиль в это время ведет себя подозрительно вяло)) и в итоге, хорошо если в сервисе при обслуживании следят за количеством сажи и проводят аварийную регенерацию своевременно, а если нет ?
Если «нет» существуют два пути — попытка отмыть фильтр паровой смесью которая впрыскивается перед катализатором и просто связывает сажу вытекая черной субстанцией (В качестве примеров можно привести -DPF Cleaner, Pro-Line Diesel Partikelfilter Reiniger от Liqui Moly, Tunap -широко рекламируемый, можно также вспомнить различные присадки в само топливо от Wynn’s, Valvoline, Verylube использование которых весьма желательно при начале эксплуатации автомобиля с сажевым фильтром, а не с возникновением самих проблем .
p/S/ Кстати, хотелось бы отметить сходную механику по части добавления специальных примесей в ОГ, демонстрируют сажевые фильтры на пежо, Ситроен(общепринятое обозначение FAP (Filtre a Particules) где в выпуск впрыскивается специальная присадка и говоря простым языком «готовим барбекю» только вливаем на «угли» не жидкость, а соединение церия который сгорая поднимает температуру до приемлимых 1000 градусов выжигая таким образом сажу )) .
К сожалению жидкие субстанции нормально очищают, как правило, небольшое количество сажи, а когда наступает момент и штатная регенерация не помогает, то обычно все происходит, как описано вот здесь .Второй путь — просто его удалить в том числе и программно. Первый способ не является ультимативным и фильтр все равно накапливает больше сажи, хотя у него есть и сторонники и противники (вреда то точно не нанесет ), чем ее теряет, может быть просто удалить ?
Для начала какой дизельный мотор имеется ввиду если PD-TDi (насос форсунка ), то имеет смысл учитывать, к примеру, вот такое обстоятельство .

…которое приведет к дополнительному расходу топлива и переобогащению смеси, и вполне можно получить вот такой эффект при перегазовке (запах кстати тоже соответствующий)) .

…через некоторое время и сам оконечник выхлопной трубы начинает выглядеть неприглядно .Впрочем и на CR-TDi к сожалению от такого «приятного «сюрприза полностью обойтись тоже не удастся, подозреваю, что механика привода и там переработана. Лично меня, в такой операции, которую называют «перепрошивка при удалении сажевого фильтра «удивляет ее не адекватная стоимость((. Хочу напомнить речь идет не о переработке параметров трехмерной характеристики, с подгоном отдельным параметров на мощностном стенде . Надо четко понимать, что в случае с сажевым фильтром, заводом изготовителем была предусмотрена возможность установка его в качестве ДОПОЛНИТЕЛЬНОГО оборудования .

…а это значит, что при такой установке допускается изменение минимального набора «ключей» которые уже в заводской прошивке имеются и такое перепрограммирование не является сложным процессом .Хорошо, допустим, Вы решили раз и навсегда избавиться от данной детали и не хотите больше вспоминать радостные ощущения от внезапного снижения мощности, зажигания лампочки, переживаний о потере времени в сервисе. Что в этом случае Вы получаете ? Среди положительных моментов, кроме вышеописанного это снижение расхода топлива, возможность в дальнейшем повышения мощности ДВС посредством тюнинговой прошивки, довольно часто снижение порога частоты оборотов при «подхвате « вовремя ускорения, использование обычного НЕ малозольного масла (т.е. существенно увеличивается выбор и снижается стоимость такого масла ), а среди отрицательных ? Первым делом можно забыть о посещении европейских стран, самый простой дымомер поставит крест на Вашем желании покатать на своем авто по улицам не только Парижа и Берлина, но и Риги и Таллина, законодательство по этой части очень жесткое . Далее, в свое время я долго пытался решить как найти сервис который удаляя сажевый фильтр и меняя прошивку, подберет ТАКОЙ резонатор/глушитель, который будет хотя бы частично снижать количество сажи при перегазовке для этой цели рассматривались обычные «проходные» катализаторы, смещение банки вдоль выпускного тракта, изменение топливной карты в прошивке поднимая температуру цикла одновременно с отключением системы EGR и т.д, а если нет такого решения, то хотя бы снизить уровень шума на выхлопе(очень четко прослушивается подключение турбокомпрессора под нагрузкой, общий фон шумности, вибрационные нагрузки порой, довольно часто жалуются на явно выраженный «солярочный» запах выхлопа), к сожалению такую задачу полностью так и не удалось решить, не зря расчет выхлопной системы это особо охраняемая тайна, а комплект таких специализированных изделий стоит не малых денег .
-------------------------------------------------------------------------------------------------------------------------------------------------------
Что же можно сказать напоследок по данному вопросу и какой вывод сделать в общем по системе ? По моему разумению если Вам «повезло» и Ваш автомобиль оборудован такой системой, нужно, все таки по возможности максимально растянуть срок ее работы, в том числе и используя вышеописанные присадки в топливо и проводя своевременно регенерацию фильтра, и только тогда когда провести ее не будет никакой возможности думать о решении вопроса «операционным» методом, здесь полная аналогия с медициной, после удаления Ваш комфортный, немецкий автомобиль не будет уже таким комфортным …и немецким, к сожалению по сравнению с удалением катализатора на бензиновым моторе разница будет существенная, об этом желательно помнить, и не махать скальпелем преждевременно )) На этом повествование завершаю, а в части второй мы погрузимся поговорим )) с Вами о волшебном мире мочевины»Ad Blue» и почему без нее сейчас совсем не обойтись при эксплуатации дизельных моторов . До встречи.
Денис Карпов

Приборы для измерения концентрации токсичных веществ в отработавших газах

Аппаратура для измерения концентрации токсичных веществ в отработавших газах

Для проверки концентрации токсичности веществ в отработавших газах применяют многокомпонентные газоанализаторы, а для проверки дымности – дымомеры. Вот о том, какие используются приборы для измерения концентрации токсичных веществ в отработавших газах, мы и поговорим в этой статье.

В основном, для измерения концентраций газообразных токсичных веществ в отрабо­тавших газах автомобилей с бензиновыми и дизельными двигателями используется одни и те же измерительные приборы. Однако в отношении измерения концентрации углеводо­родов (НС) имеют место некоторые различия. Анализу подвергается не содержимое мешков для сбора проб, а часть непрерывного потока разбавленных отработавших газов. Затем к по­лученному значению прибавляется концентра­ция, измеренная в ходе дорожных испытаний. Причина такого подхода заключается в том, что углеводороды (имеющие высокую темпера­туру кипения) конденсируются в (не нагретом) мешке для сбора проб отработавших газов.

  • Парамагнитный метод (для измерения кон­центрации O2);
  • Детектор Cutter FID: комбинация пламенно­ионизационного детектора и поглотителя неметановых углеводородов (для измере­ния концентрации СН4);
  • Массовая спектроскопия (многокомпо­нентный анализатор);
  • FTIR-спектроскопия (инфракрасная спек­троскопия с преобразованием Фурье, многокомпонентный анализатор);
  • Инфракрасная лазерная спектроскопия (многокомпонентный анализатор).

Ниже приведены описания некоторых изме­рительных приборов.

NDIR-анализатор

Измерительная камера анализатор NDIR

NDIR-анализатор (недисперсионный инфра­красный анализатор) использует свойство некоторых газов поглощать инфракрасное из­лучение в узком диапазоне длин волн. Погло­щенное излучение преобразуется в энергию колебаний или вращения молекул поглощаю­щего вещества. В свою очередь эту энергию можно измерить, как тепловую энергию. Вы­шеописанное явление относится к веществам, молекулы которого состоят из атомов как ми­нимум двух различных элементов, например, СО, СO2, С6Н14 или SO2.

Интенсивность излучения из кюветы может быть снижена за счет поглощения испытуе­мым газом. Разность энергий излучения вы­зывает возникновение потока, который может быть измерен датчиком потока или датчиком давления. Вращающийся прерыватель преры­вает инфракрасное излучение, что вызывает изменение направления потока и, следова­тельно, модуляцию сигнала датчика.

NDIR-анализаторы очень чувствительны к присутствию в анализируемом газе влаги, по­скольку молекулы Н2O поглощают инфракрас­ное излучение в широком диапазоне длин волн. По этой причине NDIR-анализаторы располага­ются после системы обработки газа (например, газоохладителя), служащей для осушения от­работавших газов, если выполняются измере­ния неразбавленных отработавших газов.

Хемилюминесцентный детектор (CLD)

Поскольку стандарт устанавливает общее предельное содержание оксидов азота в отрабо­тавших газах, требуется определять количество молекул NO и NO2. Однако, т.к. принцип действия хемилюминесцентного детектора ограничивает область его применения измерением только концентрации NO, испытуемый газ пропускается через преобразователь, в котором диоксид азота восстанавливается до оксида азота.

Пламенно-ионизационный детектор (FID)

Детекторы GC FID и Cutter FID

Существуют два основных метода измерения концентрации метана в испытуемом газе Оба метода включают использование комби­нации сепаратора метана (СН4) и пламене-­ионизационного детектора. Для сепарирова­ния метана используется хроматографическая колонка (GC FID), или нагреваемый каталитиче­ский нейтрализатор, окисляющий отличные от метана углеводороды.

В отличие от детектора cutter FID, детектор GC FID может определять концентрацию СН4 только в прерывистом режиме (типичные ин­тервалы между измерениями составляют от 30 до 45 секунд).

Парамагнитный детектор (PMD)

Существуют различные конструкции пара­магнитных детекторов (в зависимости от из­готовителя). Принцип действия этих детекто­ров заключается в том, что в неоднородных магнитных полях вещества с парамагнитными свойствами (такого как кислород) воздей­ствуют на молекулы. Возникающие при этом силы вызывают движение молекул. Это дви­жение регистрируется специальным детекто­ром и его интенсивность пропорциональна концентрации молекул в испытуемом газе.

Измерение содержания твердых частиц

Кроме измерения концентрации газообразных токсичных веществ, измеряется содержание в отработавших газах твердых частиц, поскольку они также являются загрязняющими агентами, содержание которых ограничивается нормами. В настоящее время законодательство предпи­сывает использование для измерения содержа­ния твердых частиц гравиметрического метода.

Гравиметрический метод (с использованием фильтра твердых частиц)

Часть разбавленных отработавших газов от­бирается из канала разбавления во время дорожных испытаний и пропускается через фильтры твердых частиц. Количество твер­дых частиц в отработавших газах (нагрузка фильтров) вычисляется, как разность весов фильтров твердых частиц до испытания и по­сле него. Затем содержание твердых частиц, произведенных во время испытания, вычис­ляется, исходя из нагрузки фильтров, общего объема разбавленных отработавших газов и частичного объема отработавших газов, про­шедших через фильтры твердых частиц.

Гравиметрический метод имеет следую­щие недостатки:

  • Относительно высокий предел детектиро­вания, который можно только в ограничен­ной степени снизить, при помощи сложных измерительных приборов, а также путем оптимизации геометрии канала;
  • Невозможность непрерывного измерения содержания твердых частиц;
  • Необходимость в сложном кондициониро­вании фильтров твердых частиц с целью сведения к минимуму влияния окружаю­щей среды;
  • Невозможность определения химического состава и размеров твердых частиц.

Подсчет количества твердых частиц

В связи с вышеуказанными недостатками гравиметрического метода и с целью сниже­ния предельных значений, некоторые законо­датели в будущем также ограничат не только массу, но и количество твердых частиц.

В качестве устройства для подсчета ко­личества твердых частиц в соответствии со стандартом был заявлен «Конденсационный счетчик твердых частиц» (СРС). В этом счет­чике небольшая часть потока разбавленных отработавших газов (аэрозоль) смешивается с насыщенными парами бутанола. Конден­сация паров бутанола на твердых частицах вызывает значительное увеличение размера частиц, что дает возможность подсчитать их количество в рассеянном свете.

Количество твердых частиц в разбавлен­ных отработавших газах определяется непре­рывно. Интегрирование измеренных значе­ний позволяет получить количество твердых частиц, произведенных во время испытаний.

Определение распределения твердых частиц по размеру

В настоящее время возрастает интерес к рас­пределению твердых частиц, содержащихся в отработавших газах по размеру. Примерами устройств, позволяющих получать такие дан­ные, являются:

  • Сканирующий мобильный определитель размеров частиц (SMPS);
  • Электрический импактор низкого давле­ния (ELPI);
  • Дифференциальный мобильный спектро­метр (DMS).

Испытания грузовых автомобилей

Измерения количества выбросов дизельных двигателей большегрузных грузовых авто­мобилей массой свыше 8500 фунтов, тре­буемые в США, начиная с 1986 модельного года, и в Европе, с вступлением силу норм Евро-4 для автомобилей массой свыше 3,5 т производится на динамических испытатель­ных стендах с использованием метода CVS (отбор проб при постоянном объеме). Од­нако, в связи с большими размерами дви­гателей, для обеспечения такой же степени разбавления отработавших газов, как для легковых и малотоннажных грузовых автомо­билей, требуется значительно более высокая производительность вентиляторов. Двойное разбавление (через вторичный канал), одо­бренное законодателем, помогает в некото­рой степени решить эту проблему.

Требуемый объемный расход разбав­ленных отработавших газов в критических условиях может быть обеспечен при помощи воздуходувки Рутса или трубки Вентури. Дру­гой возможностью является определение содержания твердых частиц в частичном по­токе разбавленных отработавших газов (при условии измерения концентраций остальных токсичных веществ в необработанных отра­ботавших газах).

Также ожидается, что с введением следую­щих, более строгих норм (например, Евро-6), для большегрузных грузовых автомобилей будут также установлены предельно допу­стимые значения количества твердых частиц.

Система контроля токсичности выхлопных газов

ГОСТ Р 52033-2003

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Автомобили с бензиновыми двигателями

ВЫБРОСЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ С ОТРАБОТАВШИМИ ГАЗАМИ

Нормы и методы контроля при оценке технического состояния

Motor vehicles with petrol engines. Emission of the exhaust gas pollutants.
Norms and methods of the control for estimation of technical condition

Дата введения 2004-01-01

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Государственный научно-исследовательский институт автомобильного транспорта" (НИИАТ) Министерства транспорта Российской Федерации, Государственным научным центром Российской Федерации - Научно-исследовательским автомобильным и автомоторным институтом (ГНЦ НАМИ) и Всероссийским научно-исследовательским институтом метрологической службы Госстандарта России (ВНИИМС)

ВНЕСЕН Техническим комитетом по стандартизации ТК 315 "Эксплуатация автомобильного транспорта и автотранспортные услуги"

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 27 марта 2003 г. N 100-ст

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие Приказом Росстандарта от 02.05.2012 N 63-ст c 01.07.2012

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 7, 2012 год

1 Область применения

Настоящий стандарт распространяется на находящиеся в эксплуатации автотранспортные средства с бензиновыми двигателями (далее - автомобили) категорий , , , , , *, оснащенные или не оснащенные системами нейтрализации отработавших газов.

* Определение категорий приведено в соответствии с приложением 7 Сводной резолюции о конструкции транспортных средств (СР.3 документ TRANS/SC.1/WP.29/78/Amend.3).

Настоящий стандарт устанавливает нормативные значения содержания в отработавших газах автомобилей оксида углерода и углеводородов, нормативное значение коэффициента избытка воздуха и методы контроля при оценке технического состояния систем автомобиля и двигателя.

Требования настоящего стандарта должны быть обеспечены конструкцией и качеством изготовления автомобилей при производстве и соблюдением правил их технической эксплуатации, установленных изготовителем.

Настоящий стандарт распространяется на транспортные средства, по своей технической характеристике попадающие под действие ГОСТ Р 41.83 и ГОСТ Р 51832.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 41.83-2004 (Правила ЕЭК ООН N 83) Единообразные предписания, касающиеся сертификации транспортных средств в отношении выбросов вредных веществ в зависимости от топлива, необходимого для двигателей

ГОСТ Р 51832-2001 Двигатели внутреннего сгорания с принудительным зажиганием, работающие на бензине, и автотранспортные средства полной массой более 3,5 т, оснащенные этими двигателями. Выбросы вредных веществ. Технические требования и методы испытаний

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.012-90* Система стандартов безопасности труда. Вибрационная безопасность. Общие требования

* На территории Российской Федерации документ не действует. Действует ГОСТ 12.1.012-2004, здесь и далее по тексту. - Примечание изготовителя базы данных.

3 Определения и обозначения

В настоящем стандарте применяют следующие термины с соответствующими определениями и обозначение:

3.1 автомобили, находящиеся в эксплуатации: Автомобили, прошедшие регистрацию в установленном порядке.

3.2 рабочая температура охлаждающей жидкости или моторного масла: Температура охлаждающей жидкости или моторного масла, рекомендованная изготовителем для работающего двигателя.

3.3 коэффициент избытка воздуха, : Безразмерная величина, представляющая собой отношение массы воздуха, поступившей в цилиндр двигателя, к массе воздуха, теоретически необходимой для полного сгорания поданного в цилиндр топлива, рассчитываемая по результатам анализа состава отработавших газов автомобилей.

3.4 система нейтрализации отработавших газов: Совокупность устройств, включающая в себя, как правило, каталитический нейтрализатор и функционально связанные с ним датчики и управляющие системы, обеспечивающая снижение выбросов загрязняющих веществ с отработавшими газами при работе двигателя в различных режимах.

3.5 экологический класс: Классификационный код, характеризующий транспортное средство в зависимости от уровня выбросов вредных загрязняющих веществ.

3.6 изготовитель: Лицо, осуществляющее изготовление транспортного средства (шасси).

3.5, 3.6 (Измененная редакция, Изм. N 1).

3.7 диагностический индикатор: Световой индикатор, расположенный на панели приборов автомобиля, со стилизованным изображением контура двигателя или надписями "Проверь двигатель" ("Check engine"), "Обслужи двигатель" ("Service engine soon") и т.п., информирующий водителя о появлении неисправностей в системах управления двигателем и нейтрализации отработавших газов.

3.8 встроенная (бортовая) система диагностирования двигателя: Совокупность входящих в конструкцию автомобиля устройств, обеспечивающих своевременное информирование водителя о неисправностях в системах управления двигателем и нейтрализации отработавших газов, а также накопление этой информации в процессе эксплуатации.

4 Нормативные значения содержания загрязняющих веществ и коэффициента избытка воздуха

4.1 Содержание оксида углерода и углеводородов в отработавших газах определяют при работе двигателя в режиме холостого хода на минимальной () и повышенной () частотах вращения коленчатого вала двигателя, установленных изготовителем автомобиля:

При отсутствии данных, установленных изготовителем автомобиля:

- значение не должно превышать:

1100 мин для автомобилей категорий и ,

900 мин для автомобилей остальных категорий;

- значение устанавливают в пределах:

2500-3500 мин для автомобилей категории М и N, не оборудованных системами нейтрализации;

2000-2800 мин для автомобилей категории М и N, оборудованных системами нейтрализации, и для автомобилей остальных категорий независимо от их комплектации.

4.2 Содержание оксида углерода и углеводородов должно быть в пределах значений, установленных изготовителем для целей оценки соответствия типа транспортного средства перед его выпуском в обращение, а при отсутствии таких данных - не должно превышать значений, указанных в таблице 1.

Категории и комплектация транспортных средств (экологический класс)

Системы нейтрализации отработавших газов: дорогая наша экология


Мир свихнулся на экологии. Парниковый эффект, озоновые дыры, глобальное потепление и затемнение. Ученые приводят цифры и демонстрируют графики, политики подписывают протоколы. И хотя споры о том, насколько различные выбросы в атмосферу изменяют климат планеты, ведутся до сих пор, автопроизводители уже давно на острие борьбы за чистоту воздуха. Все потому что общие климатические трансформации — это одно, а экология в городах, особенно мегаполисах, — несколько иное. В итоге приходится признать: современные компоненты очистки выхлопных газов разрослись до отдельных систем, плотно интегрированных в бортовую электронику. Если топливо качественное, и автомобиль еще новый, проблем с ними обычно нет. Однако с годами они могут появиться. Речь идет не только о «чековании», или электронных ошибках. Выход из строя каталитических нейтрализаторов способен привести к куда большим неприятностям, вплоть до необходимости восстановления поршневой группы двигателя.

Не нужно считать, что скопления углеводородов (CH) и окислов азота (NOx), под воздействием солнечного света и химических реакций превращающихся в смог, — примета лишь современности. Первое упоминание об удушливых облаках, повисающих над городом, относится к 1942 году. Дело было в промышленно развитой Калифорнии. Спустя восемь лет смог для этого штата стал обычным явлением, из-за чего во второй половине 60-х в нем вступили ограничения по концентрации вредных выбросов в выхлопе. Остальная Америка пришла к этому позже. В 1970 году был принят закон, по которому для автомобилей 1975 модельного года строго регламентировалось процентное содержание CH, NOx и окиси углерода (CO). В это же десятилетие к законодательному регулированию вредных выбросов пришли в Европе и Японии.



Каталитические нейтрализаторы, или конвертеры (в народе просто катализаторы), появились как раз в первой половине 70-х и, как вы понимаете, автопроизводители США какое-то время здесь были на передовых ролях. Что любопытно, помимо непосредственного снижения токсичности выхлопа эти устройства потянули за собой модернизацию сразу нескольких направлений развития автомобилестроения. Это обуславливалось самим принципом их действия, который, кстати, не изменился до сих пор.


Экология — двигатель прогресса

Металлический бочонок, расположенный между выпускным коллектором и глушителями-резонаторами, имеет внутри продольные соты, на чью поверхность нанесен слой специального вещества, являющегося катализатором. Не будем погружаться в школьный курс химии. Скажем лишь, что в качестве последнего, превращающего вредные CO и CH в углекислый газ и воду, используется платина с добавлением палладия. Такие катализаторы назывались двухкомпонентными, то есть способными нейтрализовать всего пару токсичных компонентов. В 1977 году добавили родий, благодаря чему окислы азота трансформировались в моноэлемент. Нейтрализаторы стали трехкомпонентными. Так вот, этот сравнительно простой химический процесс без проблем протекает лишь в идеальных лабораторных условиях. При реальной же эксплуатации производители столкнулись с тем, что корректная работа узла и вообще его ресурс — под постоянной угрозой. Как выяснилось, правильно «химичить» конвертер может лишь при соотношении горючей смеси по воздуху и топливу в пропорции 14,5–14,7:1. Отклонения в ту или иную сторону снижают эффективность преобразования CO и CH либо NOx. А единственная заправка этилированным бензином в состоянии попросту приговорить нейтрализатор — октаноповышающий тетраэтилсвинец сводил действие платины и палладия к нулю.


Для того чтобы сделать топливовоздушную смесь стабильной, карбюраторы начали дополнять электронным управлением. В 1975 году в Штатах же появились транзисторные системы зажигания, к минимуму сводившие пропуски в искрообразовании, от которых топливо догорало в нейтрализаторе и спекало его внутренности. Обратились к системе рециркуляции отработавших газов, которая, снижая температуру сгорания топливной смеси, уменьшает количество окислов азота. Наконец, борьба за экологию, как и желание снять побольше мощности, тоже поспособствовала скорейшему внедрению электронного впрыска — системы, способной наиболее полно раскрыть потенциал катализаторов. Тогда же, в 70-х, произошло еще одно событие — под действием законов и общественности нефтепромышленники отказались от присадок на основе тетраэтилсвинца.


А нейтрализаторы продолжили совершенствовать. Четверть века назад бочонок двинулся из-под днища автомобиля в моторный отсек, вплотную к выпускному коллектору. Это понадобилось для быстрейшего его прогрева и уменьшения вредных выбросов сразу после пуска автомобиля — вещества-катализаторы начинают действовать только при 250–300 градусах. Позже предлагались разработки отдельного электроразогрева нейтрализатора мощностью до нескольких кВт. Были системы из двух нейтрализаторов, где первый располагался непосредственно в тракте и работал, пока прогревался основной узел. Устраивались адсорбционные ловушки для углеводородов, придерживавшие их до выхода катализатора на рабочую температуру. Велись и ведутся эксперименты с материалами наполнителя. Жаропрочная керамика сравнительно тяжела и далеко не идеальна для создания сверхтонких сот. Металл для ячеек использовался и ранее, а теперь к нему обращаются вновь — на ином технологическом уровне, используя различные биметаллические сплавы. Легкие, устойчивые к температуре, тонкие, как фольга, благодаря чему можно значительно увеличить площадь напыления платины, палладия и родия.


Не отставали от «химиков» и электронщики. Лямбда-зонд, или кислородный датчик, расположенный в выпускном тракте, определяющий процент кислорода в выхлопе и посылающий сигнал на коррекцию смеси в ЭБУ, появился еще в 1976-м. Потом добавили датчик за нейтрализатором, который следит за качеством очистки газов.


Избавиться от сажи!

В начале 2000-х дошла очередь до дизелей. Их, оборудованных привычными уже каталитическими нейтрализаторами, стали оснащать сажевыми фильтрами (DPF, Diesel Particulate Filter). Дело в том, что температура выхлопных газов в режимах без нагрузки здесь ниже, чем у бензиновых моторов. Ее не хватает для полного сжигания углеродов, так получаются твердые частицы или сажа, которая может пройти через нейтрализатор.

Сажевый фильтр расположили перед катализатором. В нем тоже есть платина и такие же соты-каналы. Только расположены последние в шахматном порядке и делятся на впускные и выпускные. А между ними — фильтры-перегородки, сдерживающие твердые частицы с окислами азота. Первыми его внедрили французы из Peugeot, чуть позже немцы. Toyota в 2003-м пошла дальше — изобрела DPNR (Diesel Particulate NOx Reduction). Вроде бы тот же DPF, однако с принципиальным отличием. Он не накапливает твердые частицы — дожигает их при помощи кислорода, выделяемого из окислов азота, и дополнительной форсунки, подающей солярку в узел. Аналогом тойотовской системы является FAP (Filtre A Particules) от Peugeot. В ней для очищения фильтра от сажи служит присадка на основе редкоземельного элемента церия, которая впрыскивается в дизтопливо по сигналам ЭБУ. Что-то подобное встречается на некоторых моделях Citroen, Ford, Volvo.

Причем японцы всей системе DPNR дают гарантию, равную гарантии автомобиля. Нечто неординарное! Обычно элементы очистки выхлопных газов из договора о ней выводятся. Впрочем, о массовых проблемах с тойотовской NOx Reduction слышать не приходилось. Иное дело обычные DPF и катализаторы — что на дизелях, что на бензиновых моторах.



Очищают выхлоп и с помощью мочевины или AdBlue, как этот продукт называется в Европе — жидкости на основе аммиака, которая реагирует с NOx, после чего образуется просто азот и водяной пар. Впервые появившаяся на Mercedes в 2005 году мочевинная нейтрализация получила большее распространение на тяжелой технике, где она выступает альтернативой системе EGR.


Избавиться от нейтрализатора!

В России своя специфика. В той же Европе какое-то время назад чуть ли не в принудительном порядке нейтрализаторы начали устанавливать даже на олдтаймеры. А у нас. Бережное отношение к окружающей среде, безусловно, необходимо. Да и смог в российских мегаполисах уже не редкость. От этилированного бензина, опять же, мы давно успешно избавились. Официально! Между тем качество топлива без «свинцовой» присадки, скажем так, варьируется, и солярка по-прежнему может преподносить сюрпризы.

Ко всему прочему оставляет желать лучшего понимание того, с каким сложным и нежным узлом мы имеем дело. От этого страдает общая культура его эксплуатации. Так что же нужно знать и чего остерегаться?

Например, жестких контактов корпуса нейтрализатора о поверхность, от которых может разрушиться керамика. Переливов бензина в камеры сгорания — при неудачных пусках, пропусках зажигания и т. д. — когда топливо собирается в катализаторе и, не успев испариться, воспламеняется и спекает его соты. Попадания туда масла. Сажевый фильтр на дизеле вообще очень требователен к состоянию топливной аппаратуры. Наконец, даже парковать машину надо с умом — не над кучами листьев, сухой травой, прочими легкогорючими массами, способными вспыхнуть от раскаленного корпуса катализатора.




Кстати, иной раз начинающие разрушаться керамические соты могут никак о себе не заявлять. Положиться здесь можно только на удачу. Либо на собственную осторожность — вскрыть, посмотреть. Хотя и вскрыть-то в некоторых случаях не удастся — на тех же катколлекторах. Но что делать, если все очевидно? Обратимся к специалистам. Фирм, оказывающих такую услугу, в крупных городах достаточно. И варианты существуют. Впрочем, тут многое зависит от марки, модели, даже рынка сбыта. И как бы это странно ни звучало, от программного обеспечения ЭБУ.



— Услуга популярная. Обращаются владельцы как далеко не новых иномарок, так и совсем свежих. В первом случае, особенно если говорить о немолодых «японцах», все просто. Вынул внутренности нейтрализатора, обычно выполненные из металла, — машина обрела потерянную динамику. Блок управления двигателем не видит этих изменений. У сравнительно новых моделей такой трюк не проходит — из-за четкой привязки системы управления к показаниям двух лямбда-зондов.

Иногда, если это позволяет компоновка и сечение труб, удается установить катализатор от Патриота, стоит всего 4000 руб. Те же «японцы» (в частности, Toyota), но не самых последних поколений, где программное обеспечение загружено без возможности перепрошивки, обманываются механически. В выпускной тракт после удаления ячеек вкручиваются проставки с отверстием по центру, а уже в них — кислородные датчики. Будучи несколько отодвинутыми от потока выхлопных газов, они дают блоку управления ту же информацию, что и при наличии работоспособного нейтрализатора. Здесь приходится играть сечением отверстия в проставке. Получается всегда, однако была на моей памяти 3,5-литровая Camry 2006 года. Долго с ней работали — исчезала ошибка, но через какое-то время опять появлялась. В итоге так и ушла к другому владельцу. Стоит подобная процедура от 3000 руб. Это только удаление, и по 500 руб. за каждую проставку.


Системы управления свежих «европейцев» и «американцев» механическими «обманками» не корректируются. Нужно лезть в софт и убирать информацию о катализаторе. Lexus для заокеанского рынка требуют того же. В отличие от внутренних моделей этой марки. В любом случае — пренебрегать проблемами с нейтрализаторами нельзя. И пробитие керамики ломом здесь не панацея. Удалять нужно все начисто. Машины из-за попадания керамической пыли в цилиндры на капитальный ремонт к нам приходят периодически. Toyota, Nissan, Infiniti — с моторами серий GR, VQ, VK. Но это те двигатели, с которыми сталкивалась наша СТО. Риск, если в вашей машине катализатор расположен близко от выпускного тракта, существует вне зависимости от модели агрегата.


— Toyota даже из новых можно «обмануть» так называемым эмулятором, который устанавливается в цепь кислородного датчика. Так происходит простое удаление ошибки. То же самое можно проделать и со многими «японцами», в чьи ЭБУ информация «залита» жестко, без возможности коррекции. Цена вопроса — 18 000–21 000 руб. за эмулятор плюс 3000 руб. за освобождение полости нейтрализатора от наполнителя. Оставляем штатный корпус — звук выхлопа если и становится другим, то это едва заметно.

Сейчас ситуация активно меняется — японские производители приходят к блокам управления, в которых можно перепрошивать программное обеспечение. Для компаний из Европы и США это едва ли не традиция. В общем-то также ничего сложного — прошивка замещается той, что отвечает экологическим требованиям Евро-2, для соответствия которым нет необходимости в каталитическом нейтрализаторе. Тут не важно, бензиновый двигатель или дизельный. С последними, кстати, владельцы обращаются тогда, когда уже не помогает прожиг сажевого фильтра. Стоимость удаления аналогична — 3000 руб. Однако работы по электронике сильно зависят от марки и модели. Можно обойтись 14 000–16 000 руб. А в иных случаях цена поднимается до 40 000–50 000 руб. Все равно минимум вдвое дешевле, чем покупка оригинального каталитического нейтрализатора.

Еще добавим, что в качества альтернативы уазовскому катализатору существуют условно универсальные узлы, которые нужно подбирать по длине и диаметру. Предлагаются даже блоки без внешней оболочки. Цена того и другого — от 4000 до 11 000 руб. Для «американцев» доступен другой вариант — трубы, устанавливаемые вместо бочонка нейтрализатора, удаление бака с мочевиной, глушение системы рециркуляции и установка программатора, с которого можно менять прошивку ЭБУ и увеличивать мощность. Но этот обход экологии граничит с тюнингом и тянет минимум на $2500–3600. Между тем на многих дизелях, в отличие от бензиновых моторов, «ампутация» элементов EGR необходима в отрыве от всякой форсировки — прогорают промежуточные охладители выхлопных газов.



Словом, современные экотехнологии — тоже в духе нынешних тенденций автомобилестроения. Ладно, требуют вложений средств. Но могут и приговорить святая святых. Тот, кто один раз столкнулся с вынужденным ремонтом ЦПГ, вряд ли будет в будущем покупать новый катализатор — хоть универсальный, хоть от Патриота. Решит проблему кардинально.

Читайте также: